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The modem idea of electronegativity based on the E(q) function and the traditional chemical electronegativlry arc 
brought together in one self-contained expression. The electronegativity of a molecule is confronted u Ith the in situ elec- 
tronegativities of the component atoms. 

l_ Introduction 

The concept of electronegativity has received con- 

siderable attention from chemists, obviously lured by 

the prospects of its quantitative application. Despite 

innumerable efforts, their hopes have not yet materi- 

alized and electronegativity has remained a practical, 

qualitative guide. Although apparently well-defined 

numerically, electronegativity has not avoided confu- 
sion within the very heart of its definition_ Two differ- 

ent quantities have in fact been given the name electro- 

negativity and, strangely enough, the distinction be- 

tween them has not yet been paid sufficient attention_ 

First, the definition of primary importance for chemists 

formulates electronegativity as some number allotted 
to each element in the periodic table. These numbers 

are thought to reflect the tendency of atoms to attract 

electrons when bonded, and were more or less equiva- 

lently derived from various experimental data by 

Pauling [ 11, Mulliken [3], Gordy [3], Sanderson [4] 

and many others [S ,6] _ This quantity will be hereafter 
referred to as the chemical electronegativity, x_ An- 

other idea of electronegativity was first conceived by 

lczkowski and Margrave [7] and further developed by 

Hinze et al. [8] _ Recently, new impulse in this direc- 
tion has come from Parr’s group [9]. lczkowski and 
Margrave defined the electronegativity of an atom as a 

derivative: 

X(4) = --dE(Ar)/W = d%z)/dg , (1) 
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where E is the ener,v function for an isolated atom 

verszts the number of electrons, N, or the net charge 

q = Z - N_ X(q) is called differential electronegatiwity 
throughout this work. 

Hinze et al. [S] have noticed that numerical values 

of the chemical and differential electronegativities for 

neutral atoms were identical for the parabolic E(q) 

function based on the first ionization energy, I, and 

the electron affinity, A _ Indeed, 

E(q)=aq’ +@=$(I--A)q” +l(I+A)q, (3 

X(q)=@-A)q+X (3) 

and hence 

X(q=O)=Z_ (4) 

The equivalence (4) results from this particular approxi- 

mation for E(q) and must not be arbitrarily generalized_ 

as it does in fact implement a drastic assumption into 

an entirely obscure, if physical, E(q) function for non- 

integral charges. 

The recent work by Parr and co-workers has flour- 
ished with a rigorous definition of the differential elec- 

tronegativity [9], identified with a negative chemical 

potential of electrons: 

X = -,u = -SE(p)/Sp = -aEj&A’. (9 

The energy E(p) is some unspecified functional of the 
electron density p. Perdew et al. [lo] then derived a 

possible solution for E(lv) as a series of straight-line 

segments. 
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A separate chapter of the history of electronegati- 
vity was written by Sanderson [4]. His electronegativi- 
ty equalization principle is based in fact on the differ- 
ential electronegativities, although his work actually 
preceded the definition of lczkowski and Margrave. 
Sanderson has not avoided identity (4) for atoms. The 
aim of this identification, rooted in the Mu&ken defti- 
tion, seems to be always the same: to relate an impor- 
tant quantitative definition [eq. (l), (5)] to the exist- 
ing electronegativity scale. Even in the recent work of 
Ray et al., based on the density functional approach, 
the authors have not resisted the temptation to seek 
an identity between those quantities [ 111. 

This present work offers an answer to two ques- 
tions: (i) how to relate two definitions of electronega- 
tivity to each other. and (ii) how to express rigorously 
the electronegativity of a molecule and of a bonded 
atom in terms of the energy function. 

2. Electronegativity of a non-interacting atom 

The practical definition of the differential electro- 
negativity by means of the effective charge 4 [eq. (I)] 
implicitly admits that the energy of an atom can be ex- 
pressed simply as a function of its charge, which is a 
rather old-fashioned oversimplification when compared 
with eq. (5) It may be justified if 4 is limited to the 
range [-I, +l] and only the ground electronic state of 
the respective ions or neutral atom are considered. Al- 
though the integral 4 only has a physical meaning for a 
non-interacting atom, we do not limit the function 
E(q) and assume it to be a continuous and analytic 

function of charge (cf. ref. [ 121). To disentangle the 
chemical and differential electronegativities, the prin- 
cipal formal difference between them is to be noted. 
y, the chemical electronegativity scale for atoms, con- 
tains no reference to the E(q) function, whereas X(q) 
is only defined through E(q) and may formally be cal- 
culated for ions of any charge q_ Since they are to des- 
ignate the same physical quantity and no limitations 

for E(q) are to be introduced, the chemical electro- 
negativity may be viewed as an average value of X(q) 

over some value of charge, F = W(q)). This leads to 
the equation 

which itself justifies the suggested relationship_ The 
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chemical electronegativity may now be calculated for 
an atom of any charge q if the apbropriate integration 
limits are chosen (e.g. 4 - 1,4 + 1). Moreover, eq. (6) 
does not introduce any constraints for E(q) and the 
detailed form of E(q) is no longer needed to reassure 
the equivalence between the two definitions of elec- 
tronegativity. 

3. Electronegativity of an atom in a molecule 

The Sanderson principle of electronegativity equal- 

ization [4] has been proved to hold for the differential 

electronegativities of atoms assembled in a molecule 

[13-E]: 

Xt(qt)=X2(42)=-.-=Xh1(9hi =O), (7) 

where the common value is equal to the differential 

electronegativity of a molecule, Xhi _ However, even if 

undeniably true in a philosophical sense, the Sanderson 

principle has not yet been given a coherent arithmetical 

form that would reproduce the chemical electronega- 

tivity of a molecule, experimentally available from the 

Mulliken definition. The work by Ray et al. [12], Del 

Re [16] and the original Sanderson proposal [4] have 

a common shortcomming of being based on a specific, 

linear function X(q), universal for a given atom, an as- 
sumption which is equivalent to accepting a parabolic 
function E”(4) for isolated atoms. 

The overall energy of a molecule can be formally 
represented as 

Ehl = CEiO(*j)+~~(ql,q*,___)+e~, (8) 
i 

where eM stands for the interaction between individual 
atoms, charge dependent (“ionic”) and charge indepen- 
dent (“covalent”), respectively. Then, the chemical po- 
tential of the ith atom is 

pi =/I; - Vi, (9) 

where 

vi = aez/aq.. I (10) 

Eq. (9) is virtually the same as that for the electro- 
chemical potential in the classical thermodynamic de- 
scription. The “standard chemical potential”, ~0, is a 
characteristic function derived from ,@(Q) for an 
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isolated atom. For a bonded atom, fi f $, and hence 
the Sanderson principle does not hold for the respec- 
tive standard differential electronegativities X0(q) = 
-JlO! 

The Sanderson principle and eq. (9) may be written 
Jointly as 

xnl(% = 0) = Xf(q& + 5. (11) 

The chemical electronegativity of a molecule can be 
found by takiig an average of the left-hand side, accord- 
ing to eq. (6): 

where the subscripts + and - refer to the net charges of 
individual atoms within the molecular ions M+ and M-, 
respectively. This general formula might m principle 
lead to the numerical value of zbf. 

On the other hand, an average of the right-hand side 
of eq. (11) within the limits qi - 1 and qi + 1 gives an 
analogue of the chemical electronegativity of this 
bonded atom: 

‘i M . = $ [Eip(qi + 1) - Ei”& - l)] 

+ i kg%? 1 J72 ,... qj + I,...) 

- $%?l,92 ,__. qj - l,._. )]. (13) 

Neglecting for a while the change in interaction and ad- 
mitting the parabolic Eo(q) function we obtain 

3 AZ = 2alqi + Fi, (13 9 
which is exactly the result of Ray et al. and is equivalent 
also to the Sanderson expression. xj M will clearly not 
be the same for various atoms constiking the molecule 
and neither will it have any general reference toxin as 

demonstrated by eqs. (12) and (13). Under these cir- 
cumstances, it is rather surprising that electronegativi- 
ties based on eq. (14) [ 1 l] reasonably meet expecta- 
tions for the chemical electronegativities of a number 
of molecules. This seems to result from the peculiar 
property of this quantity. With the expected value be- 
tween 2 and 10 eV, it appears to be rather insensitive 
to the details of the calculation procedure. Three avail- 
able formulae [4,1 I] provide quite close values. For 
a collection of 42 binary molecules *, the average de- 

viation from the mean value of the three formulae is 
only 0.36 eV. Strangely enough, the trivial formula 

4 (Idonor + A ac,.+tor) [lo] ** yields results not ob- 
viously inferior to the other three. The mean of the 
four results is shifted by only 0.05 eV in average 
against the mean of the former three, with the stan- 
dard deviation from the mean value changing to 0.40 
eV. Statistically then, the trivial formula is as much 
confident as any other proposed hitherto! Unfortuna- 
tely, the experimental data are not more reliable, as 
the electron affinity of a molecule is rarely known 
with an uncertainity of less than 0.3-0.5 eV. This 
prevents exploring the electronegativity of a molecule 
in more than a qualitative sense, even for donor and 
acceptor molecules where the need for a quantitative 
index of electronegativity is most clearly seen. 

4. The energy function 

The chemical potential p enters the density func- 
tional approach as a bgrange multiplier whose value 
is not specified a priori [9,12] _ However. the very for- 

mulation of a continuous EO(q) function implicitly in- 
troduces a model of a continuous electronic gas, and 
hence hints at the Thomas-Fermi model of an atom 
which gives po = 0 for a neutral, non-interacting atom 
[9] _ This has been postulated to be a more general 
property of neutral atoms and stable molecules [ lS] , 

leading to important conclusions: (i) The parados 
discussed by Perdew et al. [lo] is circumvented as 
there is no charge flow between non-interacting atoms 
Z and Y since $ = pt = 0. (ii) A new limitation for 

E”(@) arises: (dE”/dq),=o = 0. (iii) The Sanderson 
principle is automatically fulfilled by S,(q 1) = Xl(q2) 

= . . . =Xlr = 0 for a stable mo!ecule, which, however, 
makes the principle not veq- informative_ (iv) Eqs. (9) 
and (11) now yield 

$(qi) = -Xi”c,,.) = vi_ (15) 

The standard differential electronegativity of a bonded 
atom is equal to the negative gross electrostatic poten- 
tial at the site of this atom. The potential Vi is not a 
true local value at the nucleus (iTo . i). but in fact the 

*: Collected in tables Z and 3 of ref. Ill]. 
Including the promotion energies, u hen applicable. Taken 
from ref. [ 171. 



Volume 103. number 3 CHEMICAL PHYSICS LETTERS 30 December 1983 

point-charge approximation to atoms is hidden in it 
pqi(lO)). Approximately, Pi can be related to Vu,i by 

(16) 

If Vi becomes eventually accessible via eq. (16), one can 
explore eq. (15) to establish a realisticX”(q) function 
[and EO(q)]. On the other hand, a reasonable choice 
for Eu(q) would provide insight into the interaction of 
an atom with the rest of the molecule simply through 
X0(q)! The I?(q) function has not only to meet con- 
ditions that warrant its physical meaning but also must 
lead to acceptable observables, the simplest of which 
are net atomic charges and binding energies. They can 
be calculated for systems only when the interaction 
term epfn can be approximated with some degree of 
confidence_ The most evident examples of this type 
are ionic crystals, where the Madelung and repulsive 
energies are readily available and account for almost 
100% of the ionic interaction. The parabolicEO(q) 
function, widely used in electronegativity considera- 
tions, leads to inadmissible net atomic charges and/or 
lattice energies for this class of compounds, e.g. qNa+ = 
-1.37 in solid NaCl. Recently, a novel function has 
been proposed [ 181: 

EO(q) = + (I - A)q-+ + xq3 . (17) 

Thii trial function is the simplest possible polynomial 
conforming to the ~~(4 = 0) = 0 postulate that also 
yields correct charges and energies for a broad selec- 
tion of crystals [ 181. 

5. Conclusion 

The two sets of differential electronegativities of a 
bonded atom, X(q) and x0(q), may be thought to re- 
flect two different features of a molecule. The uniformi- 
ty of the chemical potential is seen through X(q), exact- 
ly as postulated by Sanderson [4] and proved by 
Donnelly and Parr [ 131; the molecule appears to be 
unity, a system of joint vessels filled by the electronic 
gas. On the other hand, the inner chemical diversifica- 
tion of the molecule is observed by means of standard 
electronegativities,~O. They reflect differences between 

atoms in the molecule due both to their effective 
charges and to the fact that atoms remain different 
chemical individuals despite being bonded. This seems 
to be very much a chemical point of view. 

The relationship-between the standard electronega- 
tivities and electrostatic potentials (eq. (15)) points 
out a possible use of the former as reactivity indices in 
a manner similar to molecular electrostatic potentials 
[20] _ It remains to be seen whether the striking simpli- 
city of calculation and straightforward application to 
any system from an ionic molecule to the solid surface 
may perhaps show itself competitive enough to have 
standard electronegativities paid some attention in fu- 
ture work. 
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