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ABSTRACT
Local density functional theory derivatives of the electron density have been calculated analytically for the set of canonical hydrogenic orbitals;
original solutions have been obtained using the novel density gradient theorem. Results for the first and second derivatives of electron density
over N (number of electrons) and over μ (chemical potential) have been demonstrated. Calculations of the state functions ΔN, ΔE, and
Δμ disturbed by an external potential Δv(r) have been obtained via the concept of alchemical derivatives. The local softness s(r) and local
hypersoftness [ds(r)/dN]v have been proved to provide crucial chemical information on the sensitivity of orbital density to the disturbance
of the external potential Δv(r), leading to electron exchange ΔN and the corresponding changes of the state functions ΔE, Δμ. The results are
fully compatible with the well-understood character of atomic orbitals in chemistry and open a perspective to applications to atoms, free or
bonded.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0142656

I. INTRODUCTION

The group of authors active in Conceptual Density Functional
Theory (cDFT) has recently reviewed the status and prospects for
this field, with a focus on applicability of the existing tools in
chemistry. In conclusion, the authors stressed “the need to for-
mulate simple rules so that the non-expert users (both theorists
and experimentalists) can reliably and appropriately use cDFT as
an interpretational tool, with the ambition that cDFT can segue
from its current predominantly interpretative role into more pow-
erful predictive tool.”1 Following these queries, Geerlings and De
Proft have reminded in their most recent review paper, the origi-
nal thoughts by Parr and by Clementi and Coulson: New ideas (e.g.,
orbital or electronegativity) have found their place in the imagina-

tion of chemists not because they enable accurate predictions but
allow for rationalization of commonly observed phenomena.2 This
viewpoint is corroborated by any physical chemistry textbook: The
role of chemical thermodynamics rests on the conceptual power
of the formal analysis, while applications to real systems inevitably
require reasonable and well-founded approximations (e.g., activity
coefficients).

This present work is based on the newly found relationship
of the electron density gradient and the external electric field that
we called the electron density gradient theorem.3 By exploring
this theorem, we provide a step in the direction of searching for
the coherent, through an idealized mathematical approach to elec-
tron density derivatives in a similar manner as we recently have
introduced a new approximation for the Fukui function.4 The near-
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sightedness principle for electron density5 justifies the use of the
Vela–Gazquez approximation.6 This way, our localized gradient
theorem delivers the electronic softness indices (global and local)
for atoms as well as for the orbitals. Analytically obtained results of
the global and local softness from the electron density function were
presented in our recent work.4 These results, albeit not exact, have
opened a perspective for analytical calculation of the entire group of
local density derivatives and for demonstrating their practical role
in the description of the response of state functions for an electronic
system (ΔE, ΔN, Δμ) to a perturbation by an external potential. The
goal of our work is not to compete with the existing sophisticated
approaches but rather to search for a handy tool that chemists could
readily use with understanding of its theoretical background.

According to the fundamental DFT axiom,7 electron density
has been identified as the basic source of functional quantification
for any property of molecular systems. This directly corresponds to
our density gradient theorem that has recently delivered the Fukui
function and local and global softness indices.4 In order to gain
physical and chemical insight into the properties of model enti-
ties, in the spirit recently discussed in the work of Ayers et al.,8 we
consider the basic components that can be used to form the total
density, namely the density of hydrogenic orbitals. This is the case
where exact analytical solution is available and the results may then
serve as a model for numerical calculation for real systems. Orbitals,
fundamental objects of the contemporary chemistry, have won the
imagination of chemists as a tool for the interpretation of chemical
properties of atoms. The first attempt on this track was encouraging:
the relation between the global softness (S) [calculated by integration
of the analytical local softness s(r) obtained with the approximation
derived from our density gradient theorem] and the atomic number
of the nucleus (Z) has been discovered for orbitals as S∝ Z−2 as it is
expected for atoms due to their positions in the Periodic Table.4

II. ENERGY DERIVATIVES FOR CHEMICAL PURPOSES
Derivatives of electronic energy E[N, v(r)] have long been rec-

ognized as potentially valuable factors for describing the reactivity
of molecular entities.1,9–11 Global derivatives over N have been used
as reactivity indicators before the advent of the DFT concept. Elec-
tronegativity χ was introduced by Pauling;12 the quantified measure
of electronegativity for atoms proposed by Mulliken13 was first iden-
tified as the energy derivative over the formal charge of an atom14,15

and later adopted by conceptual Density Functional Theory (cDFT)
as the negative chemical potential of electrons μ = [∂E/∂N]v =−χ.16

The chemical hardness, originally postulated as a qualitative indi-
cator,17 has also been identified with the cDFT derivative:18–21

η = [∂2E/∂N]v . These global indices have also been recalled in
relation to the electrophilicity of molecules ω = μ2/2η,22,23 once
considered an important concept in the DF reactivity theory.24

The energy derivatives over the electron number belong
to the larger group of response functions defined at the cDFT
level, which may potentially help in the prediction of chemical
processes.25 The local energy derivative representing actual electron
density function, ρ(r) = [δE/δv(r)]N , has served for a qualitative
indicator of nucleophilic of electrofilic character of bonded atoms.
The second, mixed energy derivative, the Fukui function, f (r)
= [∂ρ(r)/∂N]v = [δμ/δv(r)]N was introduced by Parr and

Yang26,27 and proved to represent an extension of the original
proposal by the MO theory of reactivity by Fukui.28,29 Its relation to
the alternative second derivative of local character, the local softness,
s(r) = [∂ρ(r)/∂N]μ, has been presented by the original authors.9

The panorama of energy derivatives of the second order has been
completed by the two nonlocal derivatives: the linear response func-
tion ω(r, r′) = [δ2E/δv(r)δv(r′)]

N
and the analogous derivative

of the grand potential (Ω = E − μN), the softness kernel:30 s(r, r′)
= [δ2Ω/δv(r)δv(r′)]μ. The third-order and higher derivatives
have also been considered, though rarely tested.31 Formally, the
route for calculation of the response of the global quantities (e.g.,
ΔE, Δμ, ΔN) to the variation of the external potential Δv(r) has
been opened.

In the early cDFT era, particular attention was given to the
global factors supposedly determining the direction of a chemical
reaction, on the ground of well-recognized rules: electronegativ-
ity equalization32 and HSAB principle.17 A number of more or
less elegant formulas for ΔE and ΔN prediction for a reaction
between atoms have been proposed using the variables χ and η
for reactants.19,33–37 The profound analysis of coupling between
equilibrium state variables was elaborated by Nalewajski.38

The next stage of efforts to the cDFT platform has been dom-
inated by the exploration of the Fukui function in the direction
indicated by Parr and Yang in their fundamental statement: “Of
two different sites with generally similar dispositions for reacting
with a given reagent, the reagent prefers the one which on the
reagent’s approach is associated with the maximum response of the
system’s chemical potential.” A variety of approaches to the Fukui
functions have been elaborated, with an objective to find ratio-
nal atomic indices in that matter, which would allow a nonlocal
treatment of chemical reactions as an interaction between contact
atoms.27,39–45

The finite difference method, much in the spirit of the
Fukui theory, has typically been used in practical applications
leading to the Fukui functions characterizing nucleophilic, elec-
trophilic, and radical attack, respectively: f +(r), f −(r), and f o

(r)
= 1

2 [ f +(r) + f −(r)]. The results of this widely used approach are
exact at the 0 K limit; however, the characterization of reacting prop-
erties of an object with N electrons could not be extracted from its
electron density function ρN(r) but required additional information
on its ionized states ρN−1(r) and ρN+1(r). Calculation along these
lines have been explored widely,46–51 leading to practical compu-
tational schemes.52,53 Extensive theoretical work in this matter has
been presented in the work of Ayers et al.54–57

Another promising derivative of the local character was the
derivative of the Fukui function [∂ f (r)/∂N]ν introduced in the
work of Fuentealba and Parr58 through the Maxwell relation as a
derivative of the global hardness: h(r) = [δη/δv(r)]N . The work of
Ordon et al. has explored this derivative in order to reveal the sig-
nificance of the derivatives of Hellmann–Feynman forces59,60 and
tested the role of the h(r) function in applications to the reactiv-
ity of molecules of energetic materials;61 it has also been applied
in an original formulation of the maximum hardness principle
together with a formula for γ = (∂η/∂N)v .62 The work of Morell
et al. introduced this derivative under the name of dual descrip-
tor f +(r) − f −(r) = f (2)

(r) as an extension to the Fukui function
concept.63,64 The authors claimed that the dual descriptor could
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be a remedy, when MO theory fails to correctly predict molecular
reactivity.65 The concept has been further developed for applica-
tions as reactivity index66,67 and alternative operational formulas
have also been proposed.68 The initial hardness response provided
by this index has been explored in the theoretical description of the
Woodward–Hoffman rules.69–71

The nonlocal density derivatives have been a challenge for their
potential applications in chemistry due to their multidimensional
nature. Initial efforts have been invested in analyzing the poten-
tial role of the hardness kernel η(r, r′) as an alternative to the
softness kernel;72–75 however, the ambiguities concerning the local
hardness η(r) prevented its practical use.76–78 The extensive presen-
tation of the linear response function (LRF) has been provided in
the work of Geerlings et al.;79 the concept has been little exploited
in chemistry unlike in solid state physics. Berkowitz and Parr first
recalled the perturbation formula for the calculation of ω(r, r′).30

Senet provided the fundamental analysis of nonlinear electronic
responses.80 The work of Yang et al. presented analytical expressions
for the real-space linear response function using the Kohn–Sham
equations.81 The direct connection to the dipole polarizability ten-
sor has been demonstrated in the work of Komorowski et al.82,83

α = ∫ ∫ rr′ω(r, r′)drdr′. The authors also proposed a method for
modeling ω(r, r′) and s(r, r′) functions in 3D space.84 In the series
of papers presented in the works of Boisdenghien et al., the energy
expansion to the Taylor series has been used, leading to distur-
bance of the density formulated as Δρ(r) = Aω(r, 0). Attractive
two- and one-dimensional projections of the LRF ω(r, 0) resulted
for atoms.85,86

The chemical relevance of the whole body of DFT derivatives
of electron density has been discussed in the work of Geerlings and
De Proft.87 Systematic formulas have been collected in the work of
Heidar-Zadeh et al. for derivatives of any order, with no reference to
the actual methods of their computations.88 The unique mathemati-
cal formalism and working equations for the first- and second-order
chemical reactivity response functions at finite temperatures has
been proposed in the work of Franco-Pérez et al.52,89 The gen-
eral phenomenological relationships have been demonstrated, all of
which reduce to the traditional formulas in the zero-temperature
limit.

III. EXPLORING THE GRADIENT THEOREM
Applications of the formal cDFT apparatus to reacting objects

not only require the stationary values of the derivatives character-
izing these reactants but also call for describing their response to
the external electric field. While there is no problem with the for-
mulation of the electrostatic potential of nuclei, the formal relation
of energy derivatives to v(r) remains a mystery, as does the funda-
mental relation between ρ(r) and v(r). The recent discovery of the
original gradient theorem provided a fresh starting point90–93 by pre-
senting the exact relation between the electron density gradient and
the electric field,3,4

∇ρ(r) = ∫ ω(r, r′)ε(r′)dr′ = −∫ s(r, r′)ε(r′)dr′, (1)

ε(r) = ∑B εB(r), where εB(r) = −∇Bv(r) represents the electric
field vectors, total and atomic, respectively. A brief reminder of
the formal derivation of Eq. (1) is enclosed in the Appendix. The
very interesting new property has been unveiled by Eq. (1). The
linear response function ω(r, r′) and the softness kernel s(r, r′)
are strictly equivalent, even though both functions are by no
means identical and their mutual relation has been known as
the Berkowitz and Parr equation.30 Theoretical studies by several
authors have focused on the very nature of kernel functions and led
to interesting conclusions on their spatial properties. Prodan and
Kohn have proposed a principle of nearsightedness of electronic
matter (NEM),94 first introduced by Kohn95 and later discussed by
Bader.96 According to NEM, “for a given unperturbed system and
a given R, the density changes at ro, Δρ(ro), due to all admissible
Δv(r) have a finite maximum magnitude, Δρ, which, of course,
depends on ro, R, and the unperturbed system. (⋅ ⋅ ⋅) Δρ(ro, R)
decays monotonically as a function of R.” Applications of the NEM
principle to chemical systems within the cDFT framework lead
to the convincing conclusion that the softness kernel s(r, r′) at
constant μ can be characterized as nearsighted in contrast to the
linear response function ω(r, r′) at constant N.5 By this conclusion,
the older, intuitive approach for the softness kernel s(r, r′) has been
justified—the local approximation introduced in the work of Vela
and Gázquez,6

s(r, r′) = s(r)δ(r − r′). (2)

This approximation arises in the NEM formulation by taking
the limit R → 0 and has been explored by several authors.82,97–99

It has been tested in calculations of the Fukui functions97,100 and
allowed for linking the DFT formalism to the polarization properties
of atoms and molecules.82,98,99 The limitations of the local approxi-
mation may be tested by a simple example. At constant μ, the density
disturbance due to the external potential is

dρ(r) = −∫ s(r, r′)δv(r′)dr′.

With Eq. (2), this is reduced to dρ(r) = −s(r)dv(r); the result is
nonidentical to the exact one. However, when the global change
is calculated by integration, the difference between both vanishes:
dN = ∫ ρ(r)dr = − ∫ s(r)δv(r)dr.

When combined with the gradient theorem [Eq. (1)], the local
approximation [Eq. (2)] opens a straightforward route to the local
softness s(r), hence also to the Fukui function f (r). Equation (1)
leads to the relation4

∇ρ(r) = −s(r)ε(r). (3a)

Consequently,

s(r) = −
∇ρ(r) ⋅ ε(r)
∣ε(r)∣2

. (3b)

This equation, though not exact, formally allows for the cal-
culation of the local softness function in any system and provides
the global softness S = ∫ s(r)dr. Consequently, it leads directly to
the Fukui function: f (r) = s(r)/S. The above practical solution to
the problem of finding the Fukui function was first suggested in the
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work of Chattaraj et al.101 but has only been applied in practice in
the preceding paper by the present authors.4

The first application of Eq. (3b) focused on the verification
of this approximation for atoms.4 For an isolated atom, Eq. (3a)
is nearly exact, since the gradient vector and electric field vector
are indeed antiparallel in every point in space. Moreover, when
Eq. (3b) is applied to an atom, the following realistic conclusion is
born: s(r)→ 0 at the nucleus since the density gradient at r→ 0
is finite.91,102 Calculation of the global softness by integration of
the local softness for atoms has led to the first approach to the
global hardness (inverse softness) resulting analytically from the
electron density ρ(r).4 The results for atoms correlated reason-
ably with the traditional measure of hardness by the ionization
energy (I) and electron affinity (A) η ∝ (I − A). Fukui func-
tions calculated with Eq. (3) for atoms were based solely on the
ground state electron density of neutral atoms. Results for 36 atoms
(1–4 rows in the Periodic Table) have been demonstrated to be
reasonably close (not identical) to the average value f o

(r), char-
acteristic for a radical attack. These results have opened a broader
perspective. It is now possible to explore the formal cDFT appa-
ratus in relation to the analytical description of the response of
global state functions of a system to a variable external electric
field.

IV. THE LOCAL ELECTRON DENSITY DERIVATIVES
The concise review of the first and second derivatives of

local character presented below is aimed at disclosing a mini-
mum group of the derivatives, sufficient to reproduce the entire
collection. The derivatives of ρ(r) have been considered in two
alternative situations: for a closed system and for an open sys-
tem.31 This classification allows for their thermodynamic analysis
by the canonical ensemble E[N, v(r)] and grand canonical ensemble
Ω[μ, v(r)], respectively, with the number of electrons (N) and chem-
ical potential (μ = dE/dN) serving as basic variables, respectively,
with the external potential v(r). The density itself is a unique deriva-
tive in both systems ρ(r) = [δE/δv(r)]N = [δΩ/δv(r)]μ. The two
ensembles also provide Maxwell relations between the derivatives:
derivatives of the density in the first order may be alternatively
expressed as derivatives of the state function (μ, N) over the external
potential,26

f (r) = [
∂ρ(r)
∂N

]
v
= [

δμ
δv(r)

]

N
, (4)

s(r) = [
∂ρ(r)
∂μ
]

v

= −[
δN

δv(r)
]

μ
. (5)

The information content of the local softness s(r) is consid-
erably richer than that of the Fukui function f (r): The relation
s(r)⇒ f (r) is not reversible since Sf (r) = s(r) and S = ∫ s(r)dr.
The second mixed derivative of the density over N and μ is

[
∂2ρ(r)
∂μ∂N

]

v

= [
∂ f (r)
∂μ
]

v

= [
∂s(r)
∂N
]
v

. (6)

This may be transformed by using Eq. (5) and the connection
between global hardness and softness (∂μ/dN)v = η = 1/S given by

[
∂s(r)
∂N
]
v
= [

∂s(r)
∂μ
]

v

(
∂μ
∂N
)
v
= −

1
S
[

δS
δv(r)

]

μ
. (7)

The second density derivative over μ is also related to the
derivative of global softness over the external potential. Explor-
ing Eq. (5) and the basic relation in the grand canonical ensemble
(∂N/dμ)v = S leads to the result in Eq. (7). We have

[
∂2ρ(r)
∂μ2 ]

v

= [
∂s(r)
∂μ
]

v

= −[
δS

δv(r)
]

μ
= S[

∂s(r)
∂N
]
v

. (8)

The second density derivative over N (the hardness function or
the dual descriptor) does not provide new information,

[
∂2ρ(r)
∂N2 ]

v

= [
∂ f (r)
∂N

]

v

= [
δη

δv(r)
]

v

= −
1
S2 [

δS
δv(r)

]

μ
=

1
S
[
∂s(r)
∂N
]

v

.

(9)
Equation (8) represents the derivative in the grand canonical

ensemble and it deserves strictly the name of local hypersoftness.87

Nevertheless, since the three derivatives are redundant, the name
hypersoftness may be extended to all three [Eqs. (6), (8) and (9)].

The demonstrated direct connections of the electron density
derivatives to the functional derivatives of the global quantities
over the external potential v(r) are crucial for potential applica-
tions in chemistry since they describe the response of state func-
tions (μ, N, S). An alternative local index, the local hardness,
does not appear in this consideration. The well-recognized ambigu-
ity concerning the local hardness parameter103 has been naturally
circumvented by the systematic approach to closed and open sys-
tems by means of the canonical and grand canonical ensembles,
respectively.

Analysis of the second derivatives of the electron density hints
to possible access to their practical calculations, since the basic first
derivative s(r) is available [Eq. (3)].4 Calculation of [∂s(r)/∂N]v
by application of the gradient theorem with local approximation
has been presented in Sec. V. Practical determination of s(r) and
[∂s(r)/∂N]v allows for the exploration of the response of state func-
tions to an external potential; formal analysis follows in Sec. VI, the
results are presented in Sec. VII.

V. THE LOCAL HYPERSOFTNESS [∂s(r)/∂N]v
The straightforward route to the local softness s(r) has been

opened, when the local approximation [Eq. (2)] was applied to soft-
ness kernel in the gradient theorem [Eq. (1)]. The operating formula
for the local softness index is provided by Eq. (3b), since the electric
field from all nuclei ε(r) and the density gradient ∇ρ(r) are read-
ily computable. Extension of that calculation scheme to the second
density derivative is straightforward, by taking the d/dN derivative
of Eq. (3b). Since the electric field is independent of N, the result is

[
∂s(r)
∂N
]
v
= −
∇ f (r) ⋅ ε(r)
∣ε(r)∣2

, (10)
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where ∇ f (r) is found by taking a divergence from Eq. (3a). By the
Laplace law, ∇ ⋅ ( r̂

r2 ) = 4πδ(r), where r̂ is a unit vector in the direc-
tion r and δ(r) is the Dirac delta function.92 Thus, for a system with
many nuclei,

∇ ⋅ ε(r) = −4π∑AZAδ(r − RA). (11)

Using this with Eq. (3a) leads to

∇
2ρ(r) = −S∇ f (r) ⋅ ε(r) + 4πs(r)∑AZAδ(r − RA). (12)

The sum in the second term in Eq. (12) vanishes except at the
nuclei r = RA. On the other hand, by Eq. (3b), s(r)→ 0 when r→ RA
at each nucleus under the local approximation. The second term in
Eq. (12) may be omitted entirely. We have

∇
2ρ(r) = −S∇ f (r) ⋅ ε(r). (13)

By using this in Eq. (10), the required result for the derivative of local
softness is obtained,

[
∂s(r)
∂N
]
v
=

1
S
∇

2ρ(r)
∣ε(r)∣2

. (14)

Considering the relation Sf (r) = s(r), we also have

[
∂s(r)
∂N
]
v
= [

∂ f (r)
∂N

]
v

S + f (r)[
∂S
∂N
]
v

. (15)

By combining this with Eq. (14) and using Eq. (3b), the result for
another second derivative of electron density is obtained (the dual
descriptor),

f (2)(r) = [
∂ f (r)
∂N

]
v
=

1
S2
∣ε(r)∣2

[∇
2ρ(r) +∇ρ(r) ⋅ ε(r)( ∂S

∂N
)
v
].

(16)
The above results have all been formulated in the Cartesian

coordinates. Considering atomic orbitals, Eqs. (14) and (16) may be
anchored to the exact formulas for the electron density function ρ(r)
for these orbitals in spherical coordinates.104 The solutions will be
expressed by the radial part of the density function R(r). The spher-
ical symmetry of the electron density in a free atom allows for the
transformation of the above into a simplified form: The distance r
from the nucleus is the sole variable and v(r) = ZA/r. The global
softness S and the atomic number ZA serve as the parameters for the
result. The radial distributions function of the local hyperhardness
[ds(r)/dN]v and dual descriptor [df (r)/dN]v are

[
ds(r)
dN
]
v
=

r4

SZ2
A
[

d2R(r)
dr2 +

2
r

dR(r)
dr
], (17)

[
df (r)

dN
]
v
=

r4

S2Z2
A
{r2 d2R(r)

dr2 + [
dR(r)

dr
](2r + Z

dS
dN
)}. (18)

[dS/dN]v is obtained by integrating Eq. (17), integration of
Eq. (18) is zero by definition, this condition served as a simple test
for the results.

VI. THE RESPONSE OF THE STATE FUNCTIONS
TO A VARIATION OF THE EXTERNAL POTENTIAL

The available local derivatives: softness s(r) and hypersoftness
[∂s(r)/∂N]v allow access to the calculation of the state functions
of an electronic system, modified by an external field v(r). On the
ground of the canonical ensemble the appropriate functions are
energy ΔEN and the chemical potential ΔμN calculated at constant
number of electrons N; they describe an initial polarization effect
due to the external field. Corresponding functions in the grand
canonical ensemble are grand potential Ω = E − μN and the electron
flow ΔNμ calculated at constant chemical potential μ, thus describ-
ing a potential exchange of electrons with a reservoir, induced by the
external field.

Since the changes in global quantities (ΔEN , ΔμN and also
ΔΩμ, ΔNμ) result as a sole consequence of variable Δv(r), they all
may be calculated by the Taylor expansion to the second order,
where only the local external field appears as a variable, the asso-
ciated global parameter marked with each of the calculated values
is kept constant. The local approximation has been applied where
necessary to eliminate the nonlocal derivatives s(r, r′) by Eq. (2) and
ω(r, r′) via the Berkowitz and Parr relation.30

A. The electron flow at μ = const . ΔN μ

ΔNμ=∫ [
δN

δv(r)
]

μ
Δv(r)dr

+
1
2∫ ∫

[
δ2N

δv(r)δv(r′)
]

μ
Δv(r)Δv(r′)drdr′. (19a)

By using Eq. (5),

ΔNμ = −∫ s(r)Δv(r)dr

+
1
2 ∫ ∫

[
δs(r)

δv(r′)
]

μ
Δv(r)Δv(r′)drdr′. (19b)

Since s(r) = [∂ρ(r)/∂μ]v and [δρ(r)/δv(r′)]μ = −s(r, r′), Eq. (19b)
is transformed,

ΔNμ = −∫ s(r)Δv(r)dr −
1
2 ∫ ∫

[
δs(r, r′)

δμ
]

v

Δv(r)Δv(r′)drdr′.

(19c)
The local approximation [Eq. (2)] leads to

ΔNμ = −∫ s(r)Δv(r)dr −
1
2 ∫

[
∂s(r)
∂μ
]

v

[Δv(r)]2dr. (19d)

Considering [∂s(r)
∂μ ]v

= S[∂s(r)
∂N ]v

, the result is

ΔNμ = −∫ s(r)Δv(r)dr −
S
2 ∫

[
∂s(r)
∂N
]
v
[Δv(r)]2dr. (19e)
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B. The chemical potential at N = const. ΔμN

ΔμN = ∫ [
δμ

δv(r)
]

N
Δv(r)dr

+
1
2∫ ∫

[
δ2μ

δv(r)δv(r′)
]

N
Δv(r)Δv(r′)drdr′. (20a)

Using the definitions f (r) = [∂ρ(r)/∂N]v , μ = [∂E/∂N]v
allows for transformation of Eq. (20a),

ΔμN = ∫ f (r)Δv(r)dr +
1
2 ∫ ∫

[
∂ω(r, r′)

∂N
]

v

Δv(r)Δv(r′)drdr′.

(20b)
With the Berkowitz and Parr relation and the local approximation
[Eq. (2)], Eq. (20b) becomes

ΔμN = η∫ s(r)Δv(r)dr

+

1
2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

−∫ [

∂s(r)
∂N

]

μ
[Δv(r)]2dr

+ γ[∫ s(r)Δv(r)dr]
2

+ 2η∫ [
∂s(r)
∂N

]

μ
Δv(r)dr∫ s(r′)Δv(r′)dr′

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

. (20c)

In Eq. (20c), the replacement of dumb variables was used. Moreover,
the hyperhardness parameter γ = [∂η/∂N]v has been introduced
and the Fukui function has been replaced by the local softness f (r)
= s(r)/S = ηs(r).

C. The energy at N = const. ΔE N

ΔEN = ∫ [
δE

δv(r)
]

N
Δv(r)dr +

1
2 ∫ ∫

[
δ2E

δv(r)δv(r′)
]

N

× Δv(r)Δv(r′)drdr′

= ∫ ρ(r)Δv(r)dr +
1
2 ∫ ∫

ω(r, r′)Δv(r)Δv(r′)drdr′.
(21a)

After using the Berkowitz and Parr relation, the local approxi-
mation [Eq. (2)], and replacing the dumb variables, the result reads
as follows:

ΔEN = ∫ ρ(r)Δv(r)dr

−
1
2
{∫ s(r)[Δv(r)]2dr − η[∫ s(r)Δv(r)dr]

2
}. (21b)

D. The grand potential at μ = const. ΔΩμ

ΔΩμ = ∫ [
δΩ

δv(r)
]

μ
Δv(r)dr +

1
2 ∫ ∫

[
δ2Ω

δv(r)δv(r′)
]

μ

× Δv(r)Δv(r′)drdr′

= ∫ ρ(r)Δv(r)dr −
1
2 ∫ ∫

s(r, r′)Δv(r)Δv(r′)drdr′.
(22a)

Using the local approximation [Eq. (2)],

ΔΩμ = ∫ ρ(r)Δv(r)dr −
1
2 ∫

s(r)[Δv(r)]2dr. (22b)

The analytical results presented above allow for the calculation
of the state functions with only three basic entries: electron density
ρ(r), local softness s(r), and the local hypersoftness [∂s(r)/∂N]v .
Analytical results are available for the hydrogenic orbitals.

VII. RESULTS
A. Local derivatives of electron density
for the hydrogenic orbitals

The derivatives in Eqs. (17) and (18) have been calculated ana-
lytically for the radial part of the same set of atomic orbitals that has
been used in our preceding work:4 1s, 2s. 2p, 3s, 3p, 3d; the radial
parts of the wave function for an orbital R(r) fully determines the
gradient and Laplacian of the electron density.104 The quality of the
results has been controlled by the natural critical tests: ∫ f (r)dr = 1
and ∫ f (2)(r)dr = 0.

FIG. 1. Radial distribution for the derivatives of s-type orbitals: 1s: (a) and (b), 2s:
(c) and (d) and 3s: (e) and (f); axes in a.u.
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FIG. 2. Radial distribution for the derivatives of the p-type and d-type orbitals, 2p:
(a) and (b), 3p: (c) and (d) and 3d: (e) and (f); axes in a.u.

Graphical presentations of the local hypersoftness
[∂s(r)/∂N]v and the dual descriptor [∂ f (r)/∂N]v representing the
important result of this work are shown in Fig. 1 for s-type orbitals
and in Fig. 2 for p- and d-type orbitals. For the sake of completeness,
the radial distribution functions for the original first derivatives s(r)
and f (r) have also been included in Figs. 1 and 2.4 Global [∂S/∂N]v
derivatives have been collected in Table I along with the formerly
calculated global softness S results for the chosen set of orbitals
(see Sec. VI C). New analytic results [Eqs. (17) and (18)] for the

above hydrogenic orbitals have all been collected in the Appendix
(Table IV). Graphical presentation of the Z-dependence of the
radial distribution function for the chosen group of orbitals (3s, 3p,
3d) has additionally been presented in the supplementary material
(Figs. S1–S4) for the complete set of derivatives discussed hereby.

The analysis presented in this work can be readily implemented
in numerical computations of the cDFT derivatives for free atoms. It
is also applicable to molecules, by standard techniques of visualiza-
tion for the Fukui functions. By focusing on the hydrogenic orbitals
only, the authors aim to reach an understanding of the meaning of
the newly accessible electron density derivatives and especially their
relation to the radial electron density distribution itself, available for
hydrogenic orbitals by a textbook exercise (cf. the supplementary
material, Figs. S5, S6, and S7).

B. Testing the spatial properties of the local
energy derivatives

As demonstrated in Sec. III, numerical results for the calculated
DFT electron density derivatives allow access to the important local
derivatives of the global values characterizing the electronic system:
chemical potential μ [Eq. (4)], number of electrons N [Eq. (5)],
and hardness/softness η/S [Eqs. (6)–(9)] of the electronic system.
In order to assess the potential utility of the calculated complete
set of electron density derivatives, the radial distribution of each
derivative has been confronted with the radial distribution of the
density itself. The numerical data for the characteristic points of
each radial density function (maxima, minima, and zero point) have
been collected in Tables S1–S3 in the supplementary material. Con-
cise information has been extracted from this collection in Fig. 3.
For each orbital, only the outermost maximum of the function
(electron density, first and second derivatives over N) has been
selected and their positions and heights have been marked in the dia-
grams, separately presented for the electron density and two pairs
of the density derivatives. Expressions linking each derivative to
the specific global quantity have also been recalled with these dia-
grams. Notable differences between the characteristics of the deriva-
tives have been unveiled in the diagrams, they will be discussed
in Sec. VIII.

C. Global hypersoftness and hyperhardness
Global softness S = (∂N/∂μ)v , the inverse of hardness

η = (∂μ/∂N)v = (∂2E/∂N2
)v , has already been demonstrated as

the natural quantity to describe the character of orbitals and
atoms by the present method.4 Its derivative (dS/dN)v is
related to the hyperhardness defined in CDFT as γ = (∂η/∂N)v
= (∂3E/∂N3

)v .58,60 However, there is no unique definition for the

TABLE I. Global softness S (Ref. 4), global hypersoftness (dS/dN)v [Eq. (24)], and global hyperhardness γ [Eq. (23)]
calculated for hydrogenic orbitals.

Orbital 1s 2s 2p 3s 3p 3d

S (a.u.) 6
Z2

24
Z2

20
Z2

54
Z2

50
Z2

42
Z2

(dS/dN)v (a.u.) 10
Z2

35
Z2

30
Z2

230
3Z2

72
Z2

60
Z2

γ = (dη/dN)v (a.u.) − 5
18 Z2

− 35
576 Z2

− 3
40 Z2

− 115
4374 Z2

− 18
625 Z2

− 5
147 Z2
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FIG. 3. Positions and heights of the
outermost maxima (in a.u.) for the radial
distributions of the electron density
derivatives for the canonical hydrogenic
orbitals (Z = 1): Fukui function f (r),
dual descriptor [df(r)/dN]v , local
softness s(r), and local hypersoftness
[ds(r)/dN]v . For the sake of com-
parison, analogous data for the density
function have been added (upper row
left). The derivatives of energy and
other global quantities natural in the
closed system {canonical ensemble:
E[N, v(r)], μ, η} and the open
system {grand canonical ensemble:
Ω[μ, v(r)], N, S} have also been
recalled along with rigorous definitions
of all derivatives (lower row right).

corresponding hypersoftness.60 Since η = 1/S, the hyperhardness
parameter γ may be directly linked to the global hypersoftness
understood as (dS/dN)v ,

γ = [
∂η
∂N
]
v
= −

1
S2 [

∂S
∂N
]
v

. (23)

The global hypersoftness is readily calculated by integration of
its local counterpart,

[
∂S
∂N
]
v
= ∫ [

∂s(r)
∂N
]
v

dr. (24)

Once the way to calculation of S and (∂S/∂N)v has been
opened, the hyperhardness parameter γ also becomes available from
the unique data of the electron density [Eq. (23)]. Calculated results
have been collected in Table I.

For the purpose of this work, only (∂s(r)/∂N)v has been
explored as the local hypersoftness and the global hypersoftness
by its integration [Eq. (24)]. This provides the most natural rela-
tion with the already defined hyperhardness parameter [Eq. (23)].
However, it is possible to explore another derivative natural for the

open system: (∂S/∂μ)v = S(∂S/∂N)v as an alternative choice for
the definition of global hypersoftness as has been proposed by the
group of authors in their systematic work.87,105

D. Calculation of the state functions variable
with Δv(r)

Testing the above results for hydrogenic orbitals in atoms
is most natural via the concept of alchemical derivatives over
the atomic number(dnE/dZn

)N .106,107 The idea has been earlier
demonstrated by March for atomic ions with Δv(r) = ΔZ/r proving
for the energy derivative in the first order,108,109

(
∂E
∂Z
)

N
= −∫

ρ(r)
r

dr hence ΔEN = −ΔZ∫
ρ(r)

r
dr. (25)

When this is consequently applied to calculation of the integrals
required in the results exposed in Eqs. (19e), (20c), (21b), and (22b),
the collection of integrals presented in Table II is obtained.

All integrals in Table II have been found to be functions of the
ratio α = ΔZ/Z, hence the α factor has been introduced throughout
the formalism, for the sake of clarity. Application of these data to the

TABLE II. Integrals calculated from the radial distribution functions for the local softness s(r), its derivative ds(r)/dN, and the
electron density ρ(r). S is the global softness of an orbital, Z is the atomic number, n stands for the principal quantum number
of an orbital.

Equivalence of the alchemical integrals

Calculated integrals for hydrogenic
orbitals α = ΔZ/Z, n – principal

quantum number

∫ s(r)Δv(r)dr = −ΔZ ∫
s(r)

r dr −3α

∫ s(r)[Δv(r)]2dr = −[ΔZ]2 ∫
s(r)

r2 dr −2 Z2

n2 α2

∫ [
ds(r)

dN ]μ
Δv(r)dr = −ΔZ ∫ [

ds(r)
dN ]μ

1
r dr −3α

∫ [
∂s(r)
∂N ]μ

[Δv(r)]2dr = −[ΔZ]2 ∫ [
ds(r)

dN ]μ
1
r2 dr − 6

S α2

∫ ρ(r)Δv(r)dr = −ΔZ ∫
ρ(r)

r dr − Z2

n2 α
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TABLE III. Calculated changes in state functions induced by the variation of the external potential as a result of change in Z
by ΔZ for hydrogenic orbitals. Substitution α = ΔZ/Z has been used. S stands for the global softness, γ is the hyperhardness
of an orbital (cf. Table I), and n is the principal quantum number of an orbital. Eo

n stands for the basic energy term for an orbital
of the quantum number n.

State functions calculated by the alchemical
method for α = ΔZ/Z

Slope of the ΔNμ, ΔΩμ, ΔEμ, ΔμN , ΔEN
vs α at α = 0

ΔNμ = 3α(1 + α) 3
ΔΩμ =

Z2

n2 ⋅ α(α − 1) − Z2

n2 = −2Eo
n

ΔEμ =
Z2

n2 ⋅
α
4 (α − 7) − 7

4
Z2

n2 = −
7
2 Eo

n

ΔμN = −
3α
S [1 + α( 3

2 γS + 2)] − 3
S = −3η

ΔEN =
Z2

n2 ⋅ α[α(1 − 9n2

2SZ2 ) − 1] − Z2

n2 = −2Eo
n

working equations in Sec. VI leads the results for the state functions
presented in Table III.

Given the input data in Table I (S, γ for orbitals), it should be
noted that the γS term and SZ2 term are numbers characteristic for
an orbital but not dependent on the variable factors (Z, ΔZ, or α).
The energy measures in Table III are explicit functions of the Z2/n2

term in the same manner as are the electron energy terms in the
Bohr atom. The following substitution has been introduced for the
ground state energy of the singly occupied orbital with the quantum
number n: Eo

n = Ry Z2

n2 =
Z2

2n2 [a ⋅ u.], where Ry = 1/2 a.u. is the Rydberg
constant.

An additional, supplementary energy parameter ΔEμ, has also
been included in Table III. It has been obtained by exploring the
relation between ΔΩμ and ΔNμ at constant chemical potential,

ΔΩμ = ΔEμ − μΔNμ. (26)

The chemical potential for any orbital may be approximated
by μ = − 1

2 I = 1
2 Eo

n = −Z2
/4n2, leading to the general function for the

relative energy of orbitals at constant chemical potential ΔEμ(α)
included in Table III.

VIII. DISCUSSION
The condensed results for the electron density and its deriva-

tives collected in Fig. 3 allow for a rational quantification of the
effects of variable external electric field on the electron density
described by any chosen hydrogenic orbital. These effects are clearly
divided into two separate systems: closed system (N = const.)
described by f (r), [df (r)/dN]v and open system (μ = const.) char-
acterized by s(r) and [ds(r)/dN]v . The closed system derivatives
describe the effect of polarization (no electron exchange); the open
system derivatives describe the true chemical effect by some elec-
tron exchange between an object (here merely an orbital) and
a neighbor, possibly responsible for the disturbance in question.
Exploration of these derivatives is built on a tacit assumption: that
the whole process may be divided into little steps, all of which rep-
resent a system in an electronic equilibrium, hence an equalized
chemical potential μ. That corresponds to a typical analysis of a
reaction path.

The ΔNμ value calculated by the alchemical approach
(Table III) contains a hint of the profound physical mean-
ing: To keep constant chemical potential while increasing the

electric field, an increase of N by exchanging electrons with some
“reservoir” is required ΔNμ(α) that leads to the energy change
ΔEμ(α). Interestingly, the tendency to exchange electrons measured
in the limit of infinitely small disturbance ΔNμ(α→ 0) is uniform
for all orbitals. However, the associated energy change, ΔEμ(α→ 0),
remarkably decreases with increase in the principal quantum num-
ber of an orbital (∣ΔEμ∣∝ Z2

/n2
). The ΔEμ(α) and ΔNμ(α) func-

tions may then be explored for modeling the response of atoms
to the external electric field with the electron density derivatives
s(r) and [ds(r)/dN]v now available by the local approximation.
The specific conditions of the exchange process applied in the above
analysis, constant chemical potential, is crucial from the chemi-
cal point of view, when the response of an atom bonded to some
molecular entity is considered.

Individual derivatives s(r) and [ds(r)/dN]v fully describe the
effect of change in the state functions (Δμ, ΔN) and the inherent
property of the system (ΔS or Δη). The range of observation pro-
vided by each derivative is different, an instructive comparison has
been illustrated in Fig. 3 by the position and height of the last, out-
ermost maximum for the corresponding derivatives for each orbital
(cf. Figs 1 and 2). This has been intentionally compared to the range
and height of the electron density function itself for each type of
orbital; its range increases gradually, and the height of the outermost
maximum systematically decreases with increase in the principal
quantum number n (cf. Fig. S5 in the supplementary material).
Within the group of orbitals chosen for this study, the last maxi-
mum on the radial distribution of the density appears at distances
well below 15 a.u.; however, the density function does not fall to zero
until at distances twice as large.

The local softness and hypersoftness functions, s(r) and
[ds(r)/dN]v , are dominated by the outermost maximum peak for
all orbitals, as demonstrated in diagrams (Figs. 1 and 2). Positions
of the last maximum on the radial distribution for these density
derivatives typically falls beyond the last density peak (Fig. 3). This
observation is vital: The response effect described by the deriva-
tives (ΔN) comes largely from the outer part of the electron density
around an atomic center. Additional information available in the
supplementary material completes the panorama of derivatives for
chosen orbitals: They have been calculated analytically also for Z = 2
and Z = 3 to confirm the effect of change in the density function for
orbitals and of its derivatives with increasing charge at a nucleus.

Additional information available directly on Fig. 3 is the
notable difference between derivatives in both systems: values of
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f (r) and [df (r)/dN]v span a range over an order of magnitude
smaller than values of s(r) and [ds(r)/dN]v . Moreover, the last out-
ermost maxima for functions s(r) and [ds(r)/dN]v systematically
increase with the principal quantum number n, indicating realis-
tically the dominant role of the outer range of the density for a
chemical change. This is not the case for f (r) and [df (r)/dN]v
derivatives, which show only weak dependence on n, except the very
inner part of the orbital system (1s).

The second derivatives characterize an object rather than a pro-
cess: the change introduced to the global hardness η [Eq. (9)] or to
the global softness S [Eq. (6)]. Since both quantities are not inde-
pendent, the choice of equation for characterization of the effect is
dictated by the nature of the elementary process chosen as appropri-
ate by an observer. As demonstrated in Sec. IV, Eqs. (6), (8) and
(9) are redundant, providing similar information on ΔS once the
global softness itself (S) has been determined for an unperturbed sys-
tem. As a consequence, the local hypersoftness [ds(r)/dN]v appears
to be the only second electron density derivative sufficient to char-
acterize an evolution of a reacting species; neither [df (r)/dN]v
nor [ds(r)/dμ]v derivatives are needed for practical calculation of
the response of an object to the variation of the external potential
disturbing an electronic equilibrium.

The hyperhardness γ has been investigated in early efforts for
the expansion of the E(N) function beyond the second order.58,62

The available data for atoms indicate that hyperhardness is nega-
tive and small as compared to other global quantities: hardness (η)
and electronegativity (−μ). The results for orbital hyperhardness are
all negative and rather small, as expected. The discovered uniform
relation of γ to the nuclear charge is intriguing; it comes from the
uniform dependence on Z2 both by S and (dS/dN)v (Table I). The
relation S(Z2) for atoms has been confirmed in our study of global
softness by confronting with available hardness data of atoms.4 Rela-
tion between the hyperhardness data and the nuclear charge, shown
in Table I, could only be roughly estimated by the method used at
the time of its early observations.58 The orbital hyperhardness data
in Table I call for extending this study to atoms.

IX. CONCLUSION
The analytical calculation scheme first tested for the Fukui

function and the local softness has been proved successful also for
the second electron density derivatives over N. The results present
a complete picture of the electron density derivatives allowing,
at least formally, for a calculation of the change in state func-
tions induced with a disturbance by a variable external electrostatic
potential.

Although the pilot results for the hydrogenic orbitals, as
described by this work, cannot be directly transferred to real sys-
tems, the results do provide valuable hints to the vital character-
istics of the density derivatives and also to the extension of the
method to molecules. For symmetry reasons, the basic relations
[Eqs. (3a) and (14)] may rather safely be transferred to free atoms,
if ∇ρ(r) and∇2ρ(r), fundamental for the method, are calculated
with sufficient accuracy. The radial functions s(r) and [ds(r)/dN]v
for atoms, when considered jointly with the spatial density shapes,
provide qualitative hints for the sensitivity of atoms toward an elec-
tron exchange, coherent with the familiar pictures of the orbitals.
The characteristics of each type of derivative as demonstrated by

Fig. 3 may also be taken as a rough guide for their use: The com-
monly explored f (r) and f (2)(r) functions appear to be less sensitive
a guide than the local softness and hypersoftness. Quite technically,
the basic relations [Eqs. (3a) and (14)] also hold for any molecu-
lar system and may be solved by standard method except the unique
point where ε(r) = 0. Calculation of the local softness and hypersoft-
ness in molecules requires a solution of the topological dilemma, as
the∇ρ(r) and ε(r) vectors may not be parallel and the local softness
must be considered a tensor. Nevertheless, the additive character
of both canonical equations of the method [since ε(r) = ∑AεA(r)]
opens the door for the calculation of atomic indices with no need
for a spatial division of the density between atoms. The Kohn–Sham
method appears to be preferential for these considerations, as the
electron density function provides a firm ground for application of
the presented formalism.

Exploration of the gradient theorem has opened a new field for
assessing the role of the linear response function ω(r, r′), widely
considered as the cornerstone for chemical applications in cDFT.
With both the gradient of the density and the electric field available
independently, Eq. (1) may well be used for testing the exactness
of any working approximation to ω(r, r′). On the other hand,
since both basic kernels ω(r, r′) and s(r, r′) can be used alterna-
tively in Eq. (1), and the local approximation can be applied to the
softness kernel, the linear response function has been eliminated
from calculations of the response functions (cf. Sec VI); the results
involve the local softness and hypersoftness s(r) and [ds(r)/dN]v ,
exclusively.

Practical application of the local approximation to the softness
kernel only leads to interesting consequences: The softness kernel
seems to disappear for the formalism. The local softness may be
attributed to atoms, e.g., by the method proposed in the work of Fias
et al.;5 however, no interatomic terms can be defined. This is justified
by the nearsightedness of this derivative (at constant μ) and reflects
the specific property of that kernel. The physics of electron density
is specifically described by the linear density function, leading to the
alternative picture where interatomic relation may still be exposed.
This may be illustrated by Eq. (1) directly combined with the local
approximation [Eq. (2)],

∇ρ(r) = ∫ ω(r, r′)ε(r′)dr′ = −s(r)ε(r). (27)

The atom condensed approximations for the linear response
function can still be explored, if necessary; however, a more specific
and exact method has recently been available.

The role of ω(r, r′) has been most naturally exposed on the
new platform beyond the local approximation as demonstrated by
our former works. It is the inherent component of the elements
of the density functional connectivity matrix [Eq. (A9)].3,90 The
elements of this matrix provide an adequate description of every
contact between well-defined atoms, with no need to artificially
define borderlines between them. Moreover, the exact CAB elements
are readily obtained from the Hessian matrix, with no need to specify
the ω(r, r′) function itself. Moreover, tracing their evolution along a
reaction path provides the reaction fragility spectra, a handy tool for
computational studies of transformation along an IRC.92

The alchemical approach has been applied; it is a very instruc-
tive method for systematic analysis of chemical objects, well in line
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with its most recent applications.110 An interesting result of the anal-
ysis was the response of the electronic cloud of an atom to ΔZ being
limited to the relative change in the external field measured by the
ratio ΔZ/Z, exclusively. This observation provides a hint as to the
role of a nucleus in deformations of the electronic density by inter-
actions with an external field. Politzer and Murray have recently
presented a refreshing analysis of the effects of the electric field of
nuclei on electron density (generally underestimated, according to
these experienced authors).111

The responses of the state functions, to the disturbance
Δv(r)∝ ΔZ/r, are all scaled down by the charge of the nucleus, with
the ΔZ/Z factor playing a unique role, as demonstrated by the results
shown in Table III. Calculated responses of the state functions for an
electronic system (ΔE, ΔN, Δμ) provide indications reaching beyond
the narrow orbital picture. Both ΔNμ and ΔμN in the limit (ΔZ

Z )→ 0
reach unique values. The limiting value ΔNμ = 3 a.u. appears to rep-
resent the general property of atoms, while the result ΔμN = −3η,
clearly dependent on the global hardness of an atom, is well in accord
with the meaning of this quantity and the DFT fundamentals.

It is also possible to comment on the local hardness, a quan-
tity once intuitively considered for a much-needed measure of the
local tendency to exchange electrons. The group of CDFT experts
suggested a defiant, far-reaching conclusion: “The discussion of the
local hardness should either converge toward a widely accepted and
broadly useful definition or else this quantity should be discarded.1”
A publication by other authors has tried to save the “raison d’être of
a local hardness function,112” even though the very authors admit:
“the ambiguity that underlines attempts at a formal definition of a
local hardness.”

The results of this work hint at a possible resolution: The
local softness providing the subtle characteristics of the electron
density may replace the idea of the local hardness as a local mea-
sure of site sensitivity, bypassing the ambiguities concerning the
local hardness.103 The set of two derivatives, local softness and local
hypersoftness calculated at the level of local approximation as pre-
sented in this work, has been demonstrated to provide a complete
and formally sufficient measure for the site reactivity.

This contribution has been limited to classic hydrogenic
orbitals to test the potential utility of this method with the available
analytic apparatus. As confirmed in recent applications, focusing
on orbitals allows for a general treatment of phenomena in accord
with the documented properties of density functions113 and beyond
specific features of interacting objects.114–116 Results of this present
work call for extending the proposed method to calculation of the
hypersoftness for atoms, as derivative has been proved hereby to be
non-negligible in characterization of reactive properties (Fig. 3). The
newly accessible derivatives may also contribute to understanding
the wider effects of external field on a chemical reaction, since also
mechanistic and confinement effects focused upon in recent studies2

occur via the electric field interaction on the density function.

SUPPLEMENTARY MATERIAL

The supplementary material provided with this work contains
detailed results for the (i) radial distribution functions of the density
derivatives in 3s, 3p, and 3d orbitals with the nuclear charges Z = 1, Z
= 2 and Z = 3; (ii) radial distribution functions for the electron

density in 1s, 2s, 2p, 3s, 3p, and 3d orbitals with nuclear charges
Z = 1, Z = 2, and Z = 3; and (iii) a collection of the extreme points in
the radial density functions ρ(r) and its derivatives under considera-
tion in this work f (r), df (r)

dN , s(r), and ds(r)
dN for orbitals with nuclear

charges Z = 1, Z = 2, and Z = 3.
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APPENDIX: PROOF OF THE GRADIENT
THEOREM [EQ. (10)]

For a system of n atoms, the divergences of Hellmann–
Feynman (H–F) forces in a molecule form the (n × n) DF connectiv-
ity matrix.90 Considering the properties of this matrix leads directly
to the gradient theorem [Eq. (1)].

The elements of this symmetric matrix represent the electronic
energy only and are exactly91,92

CAA = ∇A ⋅ FA = ∫ εA(r) ⋅ [∇ρ(r) +∇Aρ(r)]dr, (A1)

CA≠B = ∇B≠A ⋅ FA = ∫ εA(r) ⋅ [∇B≠Aρ(r)]dr. (A2)

The sum rule has been proved: CAA = −∑
B≠A

CBA. By combining

this with Eqs. (A1) and (A2),3,4
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TABLE IV. Radial distribution of df(r)/dN and ds(r)/dN functions for the hydrogenic orbitals.

1s
ds(r)

dN =
8
3 Z4r5

(rZ − 1) exp (−2Zr)
df (r)

dN = 2Z5r4

9 [Z
2r2
− Zr − 5] exp (−2Zr)

2s
ds(r)

dN =
1

3⋅26 Z4r5
[Z3r3

− 10Z2r2
+ 26Zr − 16] exp (−Zr)

df (r)
dN = Z5r4

9⋅29 [Z4r4
− 10Z3r3

− 9Z2r2
+ 194Zr − 280] exp (−Zr)

3s
ds(r)

dN =
8Z4r5

314 (Zx − 9)(2Zx(Zx − 18) + 81)(2Zx(Zx − 6) + 9) exp (− 2
3 Zr)

df (r)
dN = 4Z5r4

317

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Zr(Zx − 9)(2Zx(Zx − 18) + 81)(2Zx(Zx − 6) + 9)

−345(27 − 18Zr + 2Z2r2
)(27 − 10Zr +

2
3

Z2r2
)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

exp (− 2
3 Zr)

2p
ds(r)

dN =
Z5r6

480 exp (−Zr)[Z2r2
− 6Zr + 6]

df (r)
dN = Z6r5

75⋅27 [Z3r3
− 6Z2r2

− 24Zr + 60)] exp (−Zr)

3p
ds(r)

dN =
16Z5r6

25⋅311 exp (− 2
3 Zr)[Z4r4

− 27Z3r3
+ 225Z2r2

− 648Zr + 486]

df (r)
dN = 8Z6r5

54
⋅311

⎡
⎢
⎢
⎢
⎢
⎣

Z5r5
− 27Z4r4

+ 117Z3r3
+ 1296Z2r2

−

−9234Zr + 11 664

⎤
⎥
⎥
⎥
⎥
⎦

exp (− 2
3 Zr)

3d
ds(r)

dN =
16Z7r8

35⋅312 exp (− 2
3 Zr)[Z2r2

− 15Zr + 45]
df (r)

dN = 8Z8r7

945⋅313 [Z3r3
− 15Z2r2

− 45Zr + 540)] exp (− 2
3 Zr)

∫ εA(r) ⋅ [∇ρ(r) +∑B∇Bρ(r)]dr = 0. (A3)

∇ρ(r) must be unique and Eq. (A3) holds separately for every
atom (B) in a system. Hence,

∇ρ(r) = −∑B∇Bρ(r). (A4)

The electric field from all nuclei is ε(r) = ∑BεB(r). In the
canonical ensemble,

[∇Bρ(r)]N = −∫ ω(r, r′)εB(r′)dr′. (A5)

Hence,

∇ρ(r) = ∫ ω(r, r′)ε(r′)dr′. (A6)

In the grand canonical ensemble,

[∇Bρ(r)]μ = ∫ s(r, r′)εB(r′)dr′. (A7)

The alternative for (A6) reads as follows:

∇ρ(r) = −∫ s(r, r′)εB(r′)dr′. (A8)

The results shown in Eqs. (A6) and (A8) are identical; this is
proved by using the Berkowitz and Parr relation and considering the
sum of Hellmann–Feynman forces acting on the nuclei,3

∑BFB = 0.

The DF connectivity matrix also provides insight into the
specific role of the linear response function in describing the
interatomic interactions by an original formula,

CAB = [∇A ⋅ FB]N = −∫ ∫ ω(r, r′)εA(r′) ⋅ εB(r)dr′dr. (A9)
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99W. Beker, A. Stachowicz-Kuśnierz, J. Zaklika, A. Ziobro, P. Ordon, and
L. Komorowski, “Atomic polarization justified Fukui indices and the affinity indi-
cators in aromatic heterocycles and nucleobases,” Comput. Theor. Chem. 1065,
42–49 (2015).
100Y. Li and J. N. S. Evans, “The Fukui function: A key concept linking frontier
molecular orbital theory and the hard-soft-acid-base principle,” J. Am. Chem. Soc.
117, 7756–7759 (1995).
101P. K. Chattaraj, A. Cedillo, and R. G. Parr, “Variational method for determining
the Fukui function and chemical hardness of an electronic system,” J. Chem. Phys.
103, 7645–7646 (1995).
102P. K. Chattaraj, A. Cedillo, and R. G. Parr, “Fukui function from a gradient
expansion formula, and estimate of hardness and covalent radius for an atom,”
J. Chem. Phys. 103, 10621–10626 (1995).
103M. K. Harbola, P. K. Chattaraj, and R. G. Parr, “Aspects of softness and
hardness concepts of density-functional theory,” Isr. J. Chem. 31, 395–402
(1991).
104https://winter.group.shef.ac.uk/orbitron/; see also D. F. Shriver and
P. W. Atkins, Inorganic Chemistry, 3rd ed. (Oxford University Press, Oxford,
1999), p. 15.
105C. Cárdenas, N. Rabi, P. W. Ayers, C. Morell, P. Jaramillo, and P. Fuentealba,
“Chemical reactivity descriptors for amphiphilic reagents: Dual descriptor, local
hypersoftness, and electrostatic potential,” J. Phys. Chem. A 113, 8660–8667
(2009).
106M. Lesiuk, R. Balawender, and J. Zachara, “Higher order alchemical derivatives
from coupled perturbed self-consistent field theory,” J. Chem. Phys. 136, 034104
(2012).
107R. Balawender, M. Lesiuk, F. De Proft, C. van Alsenoy, and P. Geerlings,
“Exploring chemical space with alchemical derivatives: Alchemical transforma-
tions of H through Ar and their ions as a proof of concept,” Phys. Chem. Chem.
Phys. 21, 23865 (2019).
108N. H. March, “Relation between electrostatic potential of electron cloud at
nucleus and chemical potential in atomic ions,” Phys. Lett. A 82, 73–74 (1981).

J. Chem. Phys. 158, 174110 (2023); doi: 10.1063/5.0142656 158, 174110-14

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0142656/17302793/174110_1_5.0142656.pdf

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.2741535
https://doi.org/10.1021/jp046577a
https://doi.org/10.1016/j.cplett.2006.05.003
https://doi.org/10.1039/c3cp51169c
https://doi.org/10.1002/jcc.24453
https://doi.org/10.1007/s10910-014-0437-7
https://doi.org/10.1063/1.2387953
https://doi.org/10.1002/chem.200700365
https://doi.org/10.1002/chem.200700365
https://doi.org/10.1021/ar200192t
https://doi.org/10.1063/1.470384
https://doi.org/10.1063/1.474657
https://doi.org/10.1021/jp971263r
https://doi.org/10.1039/c7cp00691h
https://doi.org/10.1063/1.2918731
https://doi.org/10.1039/c1cp21213c
https://doi.org/10.1007/s00214-012-1223-x
https://doi.org/10.1007/s00214-012-1223-x
https://doi.org/10.1039/c3cs60456j
https://doi.org/10.1063/1.472498
https://doi.org/10.1063/1.3701562
https://doi.org/10.1063/1.3239503
https://doi.org/10.1063/1.3603449
https://doi.org/10.1002/jcc.21754
https://doi.org/10.1021/ct300861r
https://doi.org/10.1039/c4cp01331j
https://doi.org/10.1039/b717671f
https://doi.org/10.1016/j.cplett.2016.07.039
https://doi.org/10.1063/1.4932539
https://doi.org/10.1021/acs.jpca.9b10145
https://doi.org/10.1103/physreva.52.2645
https://doi.org/10.1063/1.4995028
https://doi.org/10.1073/pnas.0505436102
https://doi.org/10.1073/pnas.0505436102
https://doi.org/10.1103/physrevlett.76.3168
https://doi.org/10.1021/jp806282j
https://doi.org/10.1103/physreva.47.2680
https://doi.org/10.1103/physreva.47.2680
https://doi.org/10.1021/jp309390j
https://doi.org/10.1016/j.comptc.2015.04.023
https://doi.org/10.1021/ja00134a021
https://doi.org/10.1063/1.470284
https://doi.org/10.1063/1.469847
https://doi.org/10.1002/ijch.199100045
https://winter.group.shef.ac.uk/orbitron/
https://doi.org/10.1021/jp902792n
https://doi.org/10.1063/1.3674163
https://doi.org/10.1039/c9cp03935j
https://doi.org/10.1039/c9cp03935j
https://doi.org/10.1016/0375-9601(81)90941-5


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

109N. H. March, “The ground state energy of atomic ions and its variation with
the number of electrons,” in Structure and Bonding, edited by K. D. Sen (Springer-
Verlag, 1993), Vol. 80, pp. 71–86.
110Y. Khalak, G. Tresadern, D. F. Hahn, B. L. de Groot, and V. Gapsys, “Chemical
space exploration with active learning and alchemical free energies,” J. Chem.
Theory Comput. 18, 6259 (2022).
111P. Politzer and J. S. Murray, “The neglected nuclei,” Molecules 26, 2982
(2021).
112T. Gómez, P. Fuentealba, A. Robles-Navarro, and C. Cárdenas, “Links among
the Fukui potential, the alchemical hardness, and the local hardness of an atom in
a molecule,” J. Comput. Chem. 42, 1681–1688 (2021).

113S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and
T. Østergaard Sørensen, “Analyticity of the density of electronic wavefunctions,”
Ark. Mat. 42, 87–106 (2004).
114Y. Li and C. Li, “Exact analytical form of diatomic molecular orbitals,” ACS
Omega 7, 22594 (2022).
115T. Giovannini and H. Koch, “Fragment localized molecular orbitals,” J. Chem.
Theory Comput. 18, 4806 (2022).
116J. Sánchez-Márquez, D. Zorrilla Cuenca, M. Fernández Núñez, and V. J. Gar-
cía Hernández, “Introducing a new model based on electronegativity equalization
principle for the analysis of the neutral bond orbital reactivity in the c-DFT
background,” J. Quantum Chem. 122, e26993 (2022).

J. Chem. Phys. 158, 174110 (2023); doi: 10.1063/5.0142656 158, 174110-15

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0142656/17302793/174110_1_5.0142656.pdf

https://scitation.org/journal/jcp
https://doi.org/10.1021/acs.jctc.2c00752
https://doi.org/10.1021/acs.jctc.2c00752
https://doi.org/10.3390/molecules26102982
https://doi.org/10.1002/jcc.26705
https://doi.org/10.1007/BF02432911
https://doi.org/10.1021/acsomega.2c01905
https://doi.org/10.1021/acsomega.2c01905
https://doi.org/10.1021/acs.jctc.2c00359
https://doi.org/10.1021/acs.jctc.2c00359
https://doi.org/10.1002/qua.26993

