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9.1 Introduction: the search for atoms

The formal structure of the Conceptual Density Functional Theory (CDFT) has
expanded over the years to the well-organized, quasithermodynamic system
concentrated on exploration of the energy functional E[ρ(r)] in quantifica-
tion of properties of molecules. The global quantities characterizing atomic
and molecular entities are [1–4]: chemical potential μ = [∂E/∂N ]v , hardness
η = [

∂2E/∂N2
]
v
, and softness S = 1/η. The local quantities describe a re-

sponse of the density function to the change in N or μ, namely Fukui function
f (r) = [∂ρ(r)/∂N]v and local softness s(r) = [∂ρ(r)/∂μ]v . Contracting these
local quantities to atoms bonded in molecules has long been recognized as
an important challenge on the way to CDFT applications in practical chem-
istry. However, the results have been limited to various types of approximations
[5–12], far from expectations of chemistry where the reality of bonded atoms
has been a cornerstone for consideration of reactivity. The difficulty has long
been recognized: neither the QTAIM method [13] nor the Hirschfeld partition
had produced more than a ‘noumenon’ – “an object of purely intellectual intu-
ition (. . . ) subject to arbitrary (but disciplined) personal choice when specificity
is desired” [14].

For practical reasons, the closed-system representation (canonical ensemble)
has been dominating in the analyses, E [N;ν(r)]. The linear response function
(LRF), combining the electron density ρ (r) and the external potential ν (r) in a
closed system containing N electrons, has been most naturally introduced as a
functional derivative playing the key role in the chemistry oriented analyses [1]:
ω(r, r′) = [

δρ (r) /δν
(
r′)]

N
. The properties of this kernel function have been

subject of many studies concentrated on bonded atoms by observation of the
polarization of the electron density ρ (r) in a system upon disturbing the local
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external potential δν
(
r′). Geerlings et al. have demonstrated how the fundamen-

tal notion of LRF has been tentatively explored in analysis of local properties of
atoms-in-molecules [15]. Boisdenghien et al. have presented an electron energy
expansion in the Taylor series; attractive two- and one-dimensional projections
of the LRF as ω(r,0) for atoms have resulted [16,17].

Another approach to LRF by the above authors was aimed via polarizability
of atoms and molecules that has been reasonably reproduced by using com-
putable results for ω(r, r′) [18]. The formal link between the LRF and the
polarizability tensor has been first proposed by Vela and Gazques [19]. It was
dwelled upon by other authors [20,21] and the polarization-justified Fukui in-
dices have been developed on this ground by Komorowski et al. [22]. The LRF
condensed to atoms has been proposed by Sablon et al. by an arbitrary integra-
tion of the ω(r, r′) kernel; the result has been explored to quantify inductive and
resonance effects [23].

The new perspective for discerning atoms in the CDFT formalism has been
opened by exploration of the Hellmann–Feynman (H–F) forces on the nuclei.
In the absence of external fields other then from atomic nuclei, the disturbance
in the external potential �ν (r) is uniquely defined by shifts of the nuclei in
a system {�Ri}. Consequently, alternative representations for the closed and
open systems have been introduced E [N; {R}] and E [μ; {R}] [24–27]. En-
ergy derivatives over displacement of nuclei �Ri in these representations have
fundamental physical meaning of force, force constant, and anharmonicities
associated with displacement of atomic nuclei. They all directly describe prop-
erties of atoms bound within the system and characterize atomic contacts. Since
forces are entirely determined by the electron density function, there is no need
to artificially condense any local quantities for determining properties of indi-
vidual atoms.

The original concept of the Hellmann–Feynman force uniquely identifies
atomic nuclei in molecules [28,29], FA = −∇AE = Fel

A + Fnn
A . Early consid-

eration of the origin of forces and consequences thereof have been provided
by Nakatsuji [30,31]. The link between the H–F forces and the CDFT formal-
ism has been first shown by Cohen et al. [32], the authors also introduced
the new derivative of chemical potential under the name nuclear reactivity,
�A = (∂FA/∂N){R} = −∇Aμ. The concept has been explored by other authors,
however, initial hopes for directly indexing reactivity of bonded atoms by �A

were in vain [26,33,34]. In the latest work by Laplaza et al., the coupling be-
tween the orbital energies and the shifts of the nuclei has been analyzed [35].

The nuclear stiffness has been introduced as the next corresponding deriva-
tive of global hardness by Ordon et al. as an extension of this idea, namely
GA = (

∂2FA/∂N2
)
{R} = ∇Aη [25]. The whole body of energy derivatives in

the representation of atomic coordinates both in the closed (N = const.) and
open (μ = const.) systems has been formulated; their renormalization has also
been demonstrated [36,37]. The vital result of that effort focused directly on
atoms identified by the H–F forces was the discovery of vibrational softening of



Reaction fragility method Chapter | 9 265

molecules by the authors of this work [38–40] with perspectives for applications
to explosive reactions [41]. The linear response function has been essential for
bridging the energy derivatives in the basic CDFT formalism and their counter-
parts built on E [N; {R}] function [42].

A significant contribution to the theory on the role of atoms in chemical re-
activity has been elaborated by Nalewajski [43,44] with the goal to: “understand
the subtle interplay between the geometrical and/or electronic degrees of free-
dom of both isolated molecules and the reactive systems” [45]. The coupling
has been described in the atomic discretization at the CSA level, originally pro-
posed by Nalewajski [43]. This sophisticated approach has been founded on the
electron preceding perspective (“chemical thinking”) and had by necessity com-
bined the basic parameters from two nonequivalent sources: the exact positions
of nuclei and exact forces thereon have been used in parallel to the popula-
tions of the point-atoms, reasonably calculated (albeit arbitrarily defined) from
the equalization of the chemical potential in the system. The lasting value of this
analysis was in formulating the geometrical minimum energy coordinate (MEC)
concept for tracing the changes in electronic structure of a reacting system.

9.2 Exposing the electron energy by the force constants
analysis

Recently we have exposed the fresh practical power of the application of the
vector analysis to the derivatives of the H–F force along a defined reaction path
(IRC), meeting the MEC condition. We have found that the divergence of H–F
force contains solely the electronic energy of a system, since nuclear–nuclear
contributions vanish by the Laplace law [46]. This valuable property has been
first mentioned by King et al. as the frequency sum rule [47–49]. The authors
attempted to characterize bond properties with the use force divergences calling
them effective force constants and noticed that the electronic energy contributes
exclusively to the divergence of the H–F force. Decius and Wilson also used
that sum rule, however, their work has been limited to the isotopic effects [50].
The even earlier deep analysis by Salem contained the clear formulation for the
derivatives of the H–F forces [51].

We have established that the H–F force divergences calculated along the re-
action path, represent a potential source of quantitative information on evolution
of the electron density within a reacting system [52]. This is definitely an ap-
proach from the atomic and bonding perspective. The H–F force divergences for
any system of n atoms form the novel DF Connectivity Matrix C that describes
electronic properties of the system in the long desired atomic resolution. This
DF Connectivity Matrix has a different meaning than the old, arbitrary concept
of the Atomic Connectivity Matrix (ACM) first proposed by Spialter [53,54] and
developed by his followers within the graph theory [55–59]; the idea has been
applied even to an analysis of crystal structures [60], with appropriate modifica-
tions as to reflect the bond valences [61].
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Our DF Connectivity Matrix delivers theoretical description of the atomic
valences and bond orders providing readily available and exact numerical data
[62]. We obtain the elements of the DF Connectivity Matrix elements (CAA,
CAB – cumulative force constants) in the harmonic approximation by appropri-
ate summation of the elements of the Cartesian Hessian. The harmonic oscilla-
tor’s regime seems to be limiting; however, when CAA and CAB are calculated
for a sequence of stationary states along the IRC, their step-by-step variations
unveil the process beyond the harmonic condition: modification of atomic bonds
(and valences) as a result of the ongoing chemical reaction. This straightforward
method to picture the mechanism of the chemical reaction leads to the analogous
results [63] as observations of the reaction path curvatures provided with the
advanced normal modes considerations by Kraka et al. (adiabatic internal vibra-
tional mode AIMO [64]), within their unified reaction valley approach (URVA)
[65–71].

Recently we have investigated in depth the derivatives of the elements of
the DF connectivity matrix over reaction progress (dCAA/dξ , dCAB/dξ ). The
working term Reaction Fragility (RF) has been adopted for those derivatives
[52]. They were found to reproduce very accurately the evolution of common
atomic properties along a reaction path: the evolution of the atomic valence
and the bond orders, respectively [63,72]. The atomic fragilities also provide
proper measure for the contribution of an atom to the global reaction force [73]
Fξ = dE/dξ .

Since the H–F forces themselves, as well as their divergences, are readily
available in standard quantum chemical computations, the method can be rou-
tinely applied for monitoring and imaging changes in reacting systems, traced
along a reaction path. For this task we have applied the IRC formalism [74–76].
The spectrum-like diagrams of changes along a reaction have also been demon-
strated for the potential energy of bonded atoms, naturally apportioned as frac-
tions of the potential energy of a system [77]. The method provides description
of atoms and their bonds with no need for the common arbitrary definitions
assigning atomic volumes or populations [78,79].

We devote this present article to revealing links between the reaction fragility
formalism based on the DF Connectivity Matrix, and the theoretical framework
of conceptual DFT where the density linear response function plays central
role. Novel properties of the electron density function that can be deduced form
the DF Connectivity Matrix formalism have been presented first (Section 9.3).
The link between the CDFT derivatives and their counterparts in the reaction
fragility analysis is outlined. The energy expansion has been presented in the
representation E [N; {R}]; it is followed by an interpretation of the role of DF
Connectivity Matrix in tracing the vibrational energy attributed to individual
atoms. The atomic fragility modes, an alternative to the normal mode analysis,
have finally been presented (Section 9.4). Application to a chemical reaction
within the IRC formalism follows in Section 9.5. The numerical analysis of
the proton migration in formamide molecule has been presented for the sake of
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illustration the power of the atomic fragility modes in monitoring the role of
atoms in a reaction (Section 9.6).

9.3 The electron density gradient in the DF connectivity
matrix formalism

Recently we have derived direct relations between the force divergences essen-
tial for the Reaction Fragility concept and the electron density gradient [77]. We
consider here a molecule as the system of atoms in an electronically stationary
state, with no external field, other than generated by the nuclei in the system.
The divergences of H–F forces in a molecule built with n atoms form the n × n

DF connectivity matrix. As we have recently demonstrated, the elements of the
connectivity matrix are exactly [77,80]:

CAA = ∇A · FA =
∫

εA(r) · [∇ρ(r) + ∇Aρ(r)]dr, (9.1)

CB �=A = ∇B �=A · FA =
∫

εA (r) · [∇B �=Aρ(r)
]
dr. (9.2)

For the specific notation and derivations, see the Appendix 9.A.1 and 9.A.2,
respectively. The sum rule has also been established,

∑
B CBA = ∑

A CBA = 0,
hence CAA = −∑

B �=A CBA [46].

9.3.1 From the DF connectivity matrix to the electron density
gradient

By combining the above sum rule with Eqs. (9.1) and (9.2), a novel condition
for the stationary electron density has been noticed, namely

∫
εA(r) ·

[
∇ρ(r) +

∑
B

∇Bρ(r)

]
dr = 0. (9.3)

This condition is general and no symmetry restrictions have been invoked. Since
the solution for ρ(r) in Eq. (9.3) must be unique [81], and Eq. (9.3) holds sepa-
rately for every atom (A) in a system, the natural property of the electron density
in an external field from all nuclei emerges is

∇ρ(r) = −
∑
B

∇Bρ(r). (9.4)

Eq. (9.4) represents potentially important property of the electron density in
a system of atoms. For a single atom, it is reduced to the sound identity,
∇ρ(r) = −∇Bρ(r). Eq. (9.4) may be transformed into the more specific form,
as the density gradient above ∇Bρ(r) has only been conceived here as a deriva-
tive with no other condition specified. In the closed (canonical) system, it is
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conveniently expressed by the electronic response function [46],

[∇Bρ(r)]N =
∫ [

δρ(r)
δν(r′)

]
N

dν(r′)
dRB

dr′ = −
∫

ω(r, r′)εB(r′)dr′. (9.5)

Hence, Eq. (9.4) leads to a new relation between the density gradient and the lin-
ear response function, never exposed hitherto, to the best knowledge of authors,
namely

∇ρ(r) =
∫

ω(r, r′)ε(r′)dr′. (9.6)

Here ε(r′) = ∑
B εB(r′) is the electric field from all external sources (nuclei

only). This gradient theorem (Eq. (9.6)) provides the novel and much needed
interconnection between the electric field and the density gradients, as discussed
by Bader on numerous examples [13].

The proof of Eq. (9.6) is straightforward within the CDFT framework, it
provides a rationale to the conclusion from Eq. (9.4). By definition, the linear
response function in a closed system is ω(r, r′) = [

δρ(r)/δv(r′)
]
N

. Hence,

∫
ω(r, r′)ε(r′)dr′ =

∫ [
δρ(r)
δv(r′)

]
N

∇v(r′)dr′ =

=
∫ [

δρ(r)
δv(r′)

]
N

dv(r′)
dr′ dr′ = ∇ρ(r).

(9.7)

9.3.2 Equivalence of the open and closed systems

The density gradient ∇ρ(r) must not depend on the way it has been cal-
culated. Hence, an alternative for Eq. (9.5) must be checked in the grand-
canonical ensemble, appropriate for an open system with the softness kernel
s(r, r′) = − [

δρ(r)/δv(r′)
]
μ

, that is,

[∇Bρ(r)]μ =
∫ [

δρ(r)
δν(r′)

]
μ

dν(r′)
dRB

dr′ =
∫

s(r, r′)εB(r′)dr′. (9.8)

This is analogous to Eq. (9.5), however, [∇Bρ(r)]N and [∇Bρ(r)]μ are not
identical, as can be demonstrated using the well-founded and exact Berkowitz–
Parr relation [82], between the response function ω(r, r′) and the softness kernel
s(r, r′),

ω(r, r′) = −s(r, r′) + Sf (r)f (r′). (9.9)

By using this in Eq. (9.5) and applying Eq. (9.8), the difference between gradi-
ents calculated in two alternative systems is exposed as

[∇Bρ(r)]N = [∇Bρ(r)]μ − s(r)�B, (9.10)
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where s(r) = ∫
s(r, r′)dr′ is local softness and �B stands for the nuclear reac-

tivity vector. Its connection to the Fukui function is well founded (Eq. (9.11))
[25,26]: ∫

f (r′)εB(r′)dr′ = �B =
(

∂FB

∂N

)
v(r)

, (9.11)

Eq. (9.6) for the density gradient ∇ρ(r) is alternatively formulated in an open
system as

∇ρ(r) = −
∫

s(r, r′)ε(r′)dr′. (9.12)

By subtracting expressions in both systems (Eqs. (9.6) and (9.12)) then using
Eq. (9.9), it is straightforward to show that both representations for the density
gradient are equivalent. The difference between both vanishes, as expected:

s(r)
∫

f (r′)ε(r′)dr′ = s(r)
∫

f (r′)
∑
B

εB(r′)dr′ = s(r)
∑
B

�B = 0, (9.13)

where
∑

B �B = 0 since the sum of all forces acting on the nuclei vanishes,∑
B FB = 0 [46].

9.4 The energy expansion in E[N;ν(r)] and E[N;{R}]
representations

Two sets of energy derivatives have been collected for the use in the elec-
tronic energy expansion: the local functional derivatives over external potential
δ/δv(r′) typical in the CDFT formalism, and the corresponding vector deriva-
tives over atomic positions, ∇B ≡ ∂/∂RB . The relations between these two types
of derivatives have been presented first, and their much different nature has been
emphasized. Derivatives in the E [N; {R}] representation are observables char-
acterizing well-defined atoms and their links in a closed system. Direct relations
between these physical derivatives and local derivatives represent an alternative
to condensation of the local derivatives to atoms by their integration over an
arbitrary chosen part of space. By this method, bonded atoms – the focus of all
chemistry – may be endowed with an accurate physical measure of their changes
in a reaction.

Both types of the energy derivatives are equivalent when calculated within
the same system N = const. or μ = const., and they must lead to the same
energy change on disturbing the external potential by a displacement of atoms.

9.4.1 The roadmap linking the CDFT derivatives to the chemical
observables

The whole body of the derivatives up to the third degree has been presented
previously by the authors [36,37]. In Scheme 9.1 only those necessary to for
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SCHEME 9.1 Relations between derivatives of the electronic energy in the local representation
Eel [N;ν(r)] and the corresponding total energy derivatives in the nuclear coordinate representation
Eel [N; {R}] for N = const. The H–F force on a nucleus is by definition FA ≡ −∇AE and Fel

A
=

−∇AEel stands for the electronic part thereof; CBA is an element of the DF Connectivity Matrix,
N is the number of electrons.

the energy expansion (2nd degree) have been collected, as they expose the most
important feature of the vector analysis thereof, demonstrated in earlier work:
the divergences of the nuclear repulsion forces vanish, i.e., ∇B ·Fnn

A = 0 [46]. As
a consequence, the second derivatives of energy in E [N; {R}] representation are
equivalent to their counterparts calculated for the electronic energy in the CDFT
closed system. Vector derivatives (divergencies) that form the DF connectivity
matrix of the system C are all available directly by proper summation of the
elements of Cartesian Hessian [46,77].

9.4.2 The DF connectivity matrix C vs the Cartesian Hessian K

The two matrices may be presented in the atomic resolution as

C =

⎡
⎢⎢⎣

CAA CBA CCA ...

CAB CBB ...

CAC ...

...

⎤
⎥⎥⎦ and K =

⎡
⎢⎢⎢⎣

k
AA

k
BA

k
CA

...

k
AB

k
BB

...

k
AC

...

...

⎤
⎥⎥⎥⎦ .

(9.14)
The Cartesian Hessian matrix (K, 3n × 3n) of the second energy derivatives
may be viewed as an (n × n) block matrix where each k

AB
block (3 × 3) is a

pair-interaction matrix as exposed in the work by Seminario [83]. The full set
of matrix elements between atoms A and B can be written symbolically as the
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dyad of ∇B and FA vectors (see Appendix 9.A.3),

k
AB

≡ [∇B ⊗ FA] . (9.15)

Here FA is total force including the n–n interactions, Eq. (9.15) may be sepa-
rated into electronic and internuclear contributions, k

AB
= kel

AB
+ knn

AB
.

The elements of the DF connectivity matrix C are by definition the traces of

kel

AB
blocks (cf. Scheme 9.1), or the dot-products of ∇B and FA vectors. It has

been demonstrated by the authors in their preceding work, that the AB blocks
of the nuclear interactions are traceless since ∇B · Fnn

A = 0 [46]. Hence,

CAB = ∇B · FA = T rk
AB

= T rkel

AB
= ∇B · Fel

A. (9.16)

9.4.3 The energy expansion

Expansion of the energy Eel[N,v(r)] in a Taylor series has been recently re-
minded by Boisdenghien et al. in their study on the properties of the linear
response function. When N = const. (closed system), the expansion reads [16]

�Eel =
∫

ρ(r)�v(r)dr + 1

2

∫ ∫
ω(r, r′)�v(r)�v(r′)drdr′ + ... (9.17)

Here �Eel = �E − �V nn stands for the electronic energy, exclusively. In the
absence of external fields other than generated by the nuclei in the system, the
change in the external potential �v(r) may be expressed with the displacements
of the nuclei vectors (�RA), by introducing the external electric field strength
vectors εA(r) for each nucleus (cf. Appendix 9.A.1). Eq. (9.17) is transformed
to a form with atoms clearly identified, namely

�Eel = −
∑
A

�RA ·
∫

ρ(r)εA(r)dr+

+ 1

2

∫ ∫
ω(r, r′)

∑
A

∑
B

{�RA · εA(r)}{
�RB · εB(r′)

}
drdr′

.

(9.18)

The integral within the first term represents the electronic part of the H–F force
(Fel

A , cf. Scheme 9.1). The combination of two dot-products of vectors (sec-
ond term in Eq. (9.18)) may be regrouped. It is alternatively represented by the
dyadic product

[
εA(r) ⊗ εB(r′)

]
(the 3×3 matrix, cf. Appendix 9.A.3), or else,

the order within the dot-products may be altered [84,85]:

{�RA · εA(r)}{
�RB · εB(r′)

} =
= �RA · [εA(r) ⊗ εB(r′)

] · �RB = {�RA · �RB}{
εA(r) · εB(r′)

},
(9.19)
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where �RA and �RB are displacement vectors of atoms in the Cartesian sys-
tem of coordinates. Considering Eq. (9.19) (last term), the double integral in
Eq. (9.18) is transformed into the form containing an integral identical with the
CDFT expressions for an element of the connectivity matrix CAA or CBA, as
given in Scheme 9.1, respectively,

�Eel = −
∑
A

�RA · Fel
A+

+ 1

2

∑
A

∑
B

(�RA · �RB)

∫ ∫
ω(r, r′)

{
εA(r) · εB(r′)

}
drdr′.

(9.20)

Eq. (9.20) represents the general expression for the electronic energy contribu-
tion associated with a virtual displacement of atoms in a system; the electronic
force Fel

A does not vanish for a stationary state of a system,

�Eel = −
∑
A

�RA · Fel
A − 1

2

∑
A

∑
B

(�RA · �RB)CAB. (9.21)

An alternative formulation of this result may also be reproduced. The dyadic
product (the second term in Eq. (9.19)) can be introduced into Eq. (9.18) (second
term), yielding

�Eel = −
∑
A

�RA · Fel
A+

+ 1

2

∑
A

∑
B

�RA ·
{∫ ∫

ω(r, r′)
[
εA(r) ⊗ εB(r′)

]
drdr′

}
· �RB.

(9.22)

By substituting kel

AB
= ∫ ∫

ω(r, r′)
[
εA(r) ⊗ εB(r′)

]
drdr′, the classical result

written with the Cartesian Hessian is obtained, namely

�Eel = −
∑
A

�RA · Fel
A + 1

2

∑
A

∑
B

(
�RA · kel

AB
· �RB

)
. (9.23)

Eqs. (9.21) and (9.23) are identical, since the result for the product in parenthe-
ses (Eq. (9.23)) is

�RA · kel

AB
· �RB = (�RA · �RB)T r

(
kel

AB

)
. (9.24)

Given Eq. (9.16) and T rknn

AB
= 0, the final result may be formulated for the

overall energy of the system as

�E = −
∑
A

�RA · FA − 1

2

∑
A

∑
B

(�RA · �RB)CAB. (9.25)
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The second term in the Taylor expansion for the energy may be formulated
by means of the connectivity matrix (Eq. (9.25)), rather than by the Cartesian
Hessian; it represents the vibrational energy �Evib. For a system in equilib-
rium, the first term vanishes. The proof has been accomplished: the connectivity
matrix represents a complete measure for the vibrational energy contribution
to the energy of a system. By using the basic properties of the connectivity
matrix

∑
A CAB = 0 and CAB = CBA, this vibrational energy term has been

transformed to a workable general expression (cf. Appendix 9.A.4)

�Evib = −1

2

∑
A

∑
B

(�RA · �RB)CAB =

= +1

2

∑
A

∑
B<A

|�(RA − RB)|2 CAB = 1

2

∑
A

∑
B<A

CAB |�RAB |2 .

(9.26)

Hence, the nondiagonal elements of the connectivity matrix indeed serve as the
force constants for all A–B contacts in a system.

9.4.4 Atomic fragility modes

The result presented in the previous section points to the very important role of
the DF Connectivity Matrix in describing the vibrational energy of molecules
in atomic resolution. Diagonalization of the Cartesian Hessian is subject of the
classical analysis and leads to the 3n − 6 (or 3n − 5) vibrational normal modes
for a molecule (λα) and their frequencies [86,87]. Analogous procedure for the
C matrix yields (n − 1) modes, hereby referred to as the atomic fragility modes

(�ν) [77], LCLT = �. While the normal modes (λα) represent the collection of
independent oscillators (harmonic), the atomic modes (�ν) describe somewhat
condensed picture thereof. The DF Connectivity Matrix elements are cumulative
force constants [46] (or effective, according to King [47]), referring to an atom
trapped in the potential energy well, which is induced by the electron density
function of the entire system.

The relation between these two solutions, the normal modes (λα) and the
atomic modes (�ν), is indirect, but has been implied by the frequency sum rule
described by King and Wilson et al. [47,50]. In the framework of this present
work, the sum rule reads

3n−6∑
α

λα =
n−1∑
ν

�ν, (9.27)

where λα and �ν stand for the eigenvalues of matrices K and C, respectively.
Eq. (9.27) exposes the difference between the two methods for analysis of a
vibrating molecule, i.e., the normal modes and the atomic modes. Unlike the
normal modes, the eigenvalues �ν describe the electronic energy exclusively.
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The number of the atomic modes (n − 1) is less than that of the normal modes
(3n − 6), indicating that the atomic modes are physically realized by groups
of normal modes. However, the eigenvalues for normal modes cannot be di-
rectly attributed to eigenvalues of specific atomic modes, as the nuclear energy
of a system (V nn) may not be divided between atoms. The crucial information
on the reacting system is provided by the eigenvectors L associated with the
eigenvalues (�ν) of the DF Connectivity Matrix C [77]. The eigenvectors are

normalized, hence the squares of atomic coefficient for a given mode,
(
Lν

A

)2,
provide direct information on the involvement of atoms (A) in atomic modes
(ν). Also

(
Lν

A

)2 reflects the role of individual atom in a particular, physically
realistic vibration pattern affecting the electronic energy. This opens a novel ob-
servation point potentially valuable for a chemical reaction, namely observation
of the variable role of displacement of individual atoms in disturbing the elec-
tronic energy of a whole system. The atomic eigenvalues have still the meaning
of force constants, hence a collection of eigenvalues and eigenvectors calculated
on a IRC reaction trajectory provide comprehensive information on an evolution
of bonding interactions in a system and on the role of individual atoms therein.

9.5 Application to a chemical reaction

Formal analysis presented in Section 9.4 hints to the potential of the method,
when it is applied to a chemical reaction. The energy formulas of Eqs. (9.25)
and (9.26) remain valid for any fixed configuration of the nuclei, if the stationary
electron density function is found by solving the Schrödinger equation (under
Born–Oppenheimer approximation). Should that be a state of equilibrium (RS,
TS, PS), the forces will vanish on every atom,

(
Fel

A + Fnn
A

) = 0. Otherwise, the
first term in Eq. (9.25) is nonzero; nevertheless, the second term preserves its
meaning of the sum of virtual contribution to the vibrational energy from each
particular contact in the system.

The IRC method provides the firm ground for this matter: the stationary
electron state is granted at each step of the reaction path. The reaction progress
parameter ξ , as defined in the IRC formalism, offers a tool for extending the
mathematical analysis. Every state on a reaction path represents a well-defined
configuration of atoms: at each step forward along the path defined by the
increase of the reaction progress by �ξ , the position of an atom varies by
�RA = (dRA/dξ)�ξ . Moreover, the RA(ξ) dependence is limited to the linear
function, according to the computational rigor on IRC [74,75]. Hence, each step
forward on the reaction path may be used to diagnose the vibrational properties
of the given configuration of atoms.

The observation of gradual changes of the force constants in a system on the
subsequent reaction steps on the way from reagents (RS) to products (PS) con-
tains valuable information on the mechanism of this reaction, especially as the
present analysis is focused on the electronic energy contributions to bonds. In
our earlier work we have studied the evolution of H–F forces along IRC path and
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their the projection onto the reaction coordinate [88]. The second energy deriva-
tive over the reaction progress (the reaction force constant) has been advocated
by Politzer et al. [89,90]. Both derivatives have also been formulated in the
atomic resolution for use for the chemical purposes [75]. The formal analysis in
Section 9.4.3 has provided the new perspective to this approach, by proving the
electronic character of the second derivative over displacement of atoms, when
calculated on the ground of the vector analysis, and also, by demonstrating the
additive character of contributions from all bond/contacts to the vibrational en-
ergy of a system.

9.5.1 The third energy derivative over reaction progress

The third derivative of energy over reaction progress (an anharmonicity param-
eter) has not yet been analyzed as such. Our novel approach allows for a natural
description of the anharmonic effects with the use of the Reaction Fragility con-
cept aξ = d(T rC)/dξ [52] that has served as a leverage for the idea a of the
Reaction Fragility Spectra [46].

Eqs. (9.25) and (9.26) allow identifying all three energy derivatives in the
energy expansion with respect to ξ and discovering their informative potential
for a chemical reaction. The Taylor expansion for the energy function E(ξ)

reads

− �E(ξ) = Fξ�ξ + 1

2
Kξ�ξ2 + 1

6
Aξ�ξ3. (9.28)

The physical meaning of all three terms in this energy expression has been well
founded: the first represents the reaction force work [91], the second stands
for the vibrational energy (harmonic), and the last anharmonic term describes
directly the actual change of the bond structure – the chemical change. The
derivatives in Eq. (9.28) can be expressed in the atomic resolution, using the
result presented in Eq. (9.25) for the total energy. By using the natural substi-
tution �RA = (dRA/dξ)�ξ , the reaction force in Eq. (9.28) is equivalent to
the formerly presented result for projection of the HF forces onto the reaction
coordinate [75],

Fξ = −
∑
A

(
FHF

A · dRA

dξ

)
. (9.29)

The second derivative (Kξ constant) in atomic resolution will be extracted from
the second term the expansion in Eq. (9.25). Thanks to the applied vector for-
mulation, it has been proved to be of an electronic nature only, which makes it
superior for the chemical analysis over the conventional reaction force constant.
Moreover, Kξ can be related to the DF Connectivity Matrix elements CAB rather
that to the Cartesian Hessian elements by using the result for the second term
proved with Eq. (9.26) (the transformation of the product of vectors dRA/dξ
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and dRB/dξ is holding; see Appendix 9.A.4):

Kξ = −
∑
A

∑
B<A

DABCAB where DAB =
∣∣∣∣dRAB

dξ

∣∣∣∣
2

. (9.30)

For the sake of brevity, the distance factor for bonds has been introduced as
DAB . The global third energy derivative over the reaction progress will also
be sought for in the vector formulation. The reaction anharmonicity Aξ =
dKξ/dξ must be calculated when observing the local linearity condition on
IRC, d2�RA/dξ2 = 0. Hence,

Aξ = dKξ

dξ
= −

∑
A

∑
B<A

DAB

dCAB

dξ
=

∑
A

∑
B<A

DABaAB
ξ . (9.31)

Notably, this result for the reaction anharmonicity Aξ in Eq. (9.31) is entirely lo-
calized in bonds/contacts between atoms. The new quantity, aAB

ξ = −dCAB/dξ ,
has been introduced in previous works from this laboratory under the name
“bond fragility” [72]. The relation of the bond fragility to the physical mea-
sures of anharmonicity can be demonstrated (Eq. (9.32)) with the atomic anhar-
monicity vectors introduced and discussed in our previous work [37], namely
aZAB ≡ ∇ZCAB = dCAB/dRZ , as

aAB
ξ = −dCAB

dξ
= −

atoms∑
Z

aZAB · dRZ

dξ
. (9.32)

The variation of the energy parameter Kξ along a reaction path reflects the ongo-
ing modification of internal structure of bonds in a reacting system – a chemical
change induced by a reaction, the Aξ derivative reports the intensity of this ef-
fect. There are, however, two sources of change in Kξ and Aξ with � ξ , clearly
distinguishable in Eqs. (9.30) and (9.31): first, the simple shift of atoms result-
ing in the modification of their distance dRAB/dξ , and second, the modification
of the electronic nature of the system sensed by the DF Connectivity Matrix el-
ements CAB . The latter effect is an essence of the Aξ parameter representing
a sum of the bond fragilities aAB

ξ weighted by the corresponding change in

the distance factor between atoms, DAB = |dRAB/dξ |2. The role of DF Con-
nectivity Matrix has been fully exposed because the variations of its elements
described by the bond fragilities aAB

ξ have now been proved to indeed reflect
the real chemical changes in a system.

9.5.2 Relation to the local modes (adiabatic internal modes)

An anticipated, indirect relation between anharmonicity phenomenon and a
chemical reaction has also been present in the unified reaction valley approach
(URVA) by Kraka and collaborators [92]. Their description of the chemical reac-
tion mechanism is derived from the evolution of the normal modes (independent
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oscillators) along the IRC reaction path by the transformation to the diagonal
force constant matrix K. The introduction of the adiabatic curvature coefficients
tentatively assigned to bonds, as developed by these authors, allows replacing
the need of anharmonicity discussion. The reaction path is described by the
set of harmonic oscillators with a different force constant at each step [64,93].
One distinguished mode follows the reaction path (at ξ = 0, it is a transition
state mode), the other 3N − 7 modes are perpendicular to the reaction path and
to each other. These normal modes undergo variation along the IRC path; the
nonadiabatic curvature coefficients provide information on which mode drives
the reaction and the Coriolis coefficients show which modes tend to exchange
energy with each other. The authors have presented an ingenious approach to
localization of the normal modes into a predefined molecular fragment: “the
fragment motion is considered as a motion being obtained after relaxing all
parts of the vibrating molecule but the fragment under consideration” [71].
The term local modes has been adopted for these adiabatic internal coordinate
modes. The proof has been presented that the local stretching force constant for
an AB entity reflects the intrinsic strength of the bond/interaction between atoms
A and B [71]. The local stretching force constants have been claimed to repre-
sent the “universal measure of the intrinsic strength of a chemical bond based
on vibrational spectroscopy [71]”; the proof is based on the Morse model.

The Reaction Fragility (RF) method, as documented in this present work, has
common root with the local mode methodology by Kraka et al., that is, the Hes-
sian matrix calculated for the consecutive steps along IRC. The firm theoretical
background supports the RF method: the complete neglect of the internuclear
interactions is possible by the Laplace law, and the DF Connectivity Matrix
provides the characteristics of any system of interacting atoms, including the
specific collection of electronic stationary states along an IRC. By the CDFT in-
terpretation for the elements of the DF Connectivity Matrix (Scheme 9.1), they
have been endowed with the exact, universal, and unconditional relation to the
electron density via the linear response function ω(r, r′) = [

δρ(r)/δv(r′)
]
N

.
They provide a definite measure of the electronic strength of all contacts be-
tween atoms in their natural environment in a molecule. Moreover, since the
bond breaking and forming is primarily based on the redistribution of the elec-
tron density, this is immediately seen with the Reaction Fragility method, by
observation of the derivatives of the corresponding DF Connectivity Matrix ele-
ments over reaction progress along a reaction path. This result could have been
approximated by the original URVA method for a specified molecular fragment
only.

The important practical advantage of the Reaction Fragility method rests on
simplicity of its numerical procedure: computation of the full Hessian matrix is
the condition both necessary and sufficient for its implementation. Whenever a
procedure exists for obtaining branches of the IRC path, also the Hessian for
each branch will be obtained straightforwardly, and the Reaction Fragility mon-
itoring is possible for each branch of the bifurcation. The Reaction Fragility
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method also is not vulnerable to the trajectories of the second-order transition
states with two negative frequencies. For the Reaction Fragility method, the
reaction path is just a trajectory connecting points of variable molecular geom-
etry, and yet the principal advantage of the method comes from the fact that it
is exact. Discovering a relation between the local modes based on vibrational
spectroscopy (URVA), and the atomic modes (RFM), represents a challenging
task for further studies.

9.6 Example: the internal proton transfer in formamide

Following the formal analysis presented in Sections 9.4 and 9.5, the practical
consequences of the diagonalization of the DF connectivity matrix have been
analyzed. The atomic modes have been tested as a tool for tracing a role of
atoms in evolution of a system on a reaction path for the proton transfer reaction
in formamide. Also, the contributions of individual bonds/contacts to the vibra-
tional energy of and to anharmonicity parameter of this reacting system have
been tested.

9.6.1 Computational details

Numerical results for the elements of the DF connectivity matrix have been
obtained from calculation of the IRC energy profile by the standard procedure
at the MP2 level using the 6-311++G(3df ,3pd) basis set and the Gaussian 09
code [94]. The internal proton transfer reaction has been selected as an exam-
ple, the preliminary data for the diagonalization of the connectivity matrix have
already been reported for this molecule (in RS, TS, and PS only) [77,95]. H2N–
CHO molecule has been considered in the planar configuration, as established
in the former works [95]. The TS structure has been identified by means of the
QST2 algorithm and verified with the frequency calculation for the normal vi-
brational modes. The reaction progress parameter (ξ ) has been calculated in the
mass-weighted coordinates at 105 points over reaction path covering the range
(−2.90 < ξ < +2.50). The Cartesian Hessian has been calculated for each sin-
gle point on the trajectory using the geometry of the structures on the IRC; the
elements of the DF connectivity matrix have been calculated by proper summa-
tion of Cartesian Hessian elements [96], CAB = kAx,Bx + kAy,By + kAz,Bz.

The DF connectivity matrices C calculated for points on IRC have been diag-
onalized separately by the numerical NumPy (v.1.17.2) method available online
[97–99]. To reassure the correct identification of eigenvectors with eigenvalues
(�v), calculated separately at every point on the reaction path, an independent
procedure has been executed with the algorithmic method, for three charac-
teristic points, namely RS, TS, and PS [100]. This provided a test for proper
identification of atoms in normalized eigenvectors resulting from the numerical
procedure - L2

νA coefficients corresponding to the eigenvalues �v . The indi-
vidual functions �ν(ξ) and L2

vA(ξ) have been sorted out separately from the
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FIGURE 9.1 Eigenvalues of the DF connectivity matrix [�v in Hartree/(Bohr)2] variable on IRC
(ξ ) for the internal proton transfer reaction in formamide H2N–CHO.

FIGURE 9.2 The squares of the normalized eigenvector coefficients variable along the reaction
path for the internal proton transfer reaction in H2N–CHO molecule: (A) The squares of eigenvec-
tor coefficients for the mobile H4 atom in all five atomic modes. (B) The squares of eigenvector
coefficients for all atoms in the lowest �1 atomic mode.

corresponding collections of numerical data (� vs ξ and L2 vs ξ ), as smooth
(differentiable) curves accordingly. The eigenvalues for the DF connectivity
matrix along IRC have been shown in Fig. 9.1. All numerical data have been
presented in the atomic units: CAB [Hartree/(Bohr)2], ξ [(amu)1/2Bohr].

9.6.2 Characteristics of the atomic fragility modes

In order to visualize the normalized eigenvectors, two types of diagram may
be used, by collecting them by atoms or by the modes. Both types of diagram
have been depicted in Fig. 9.2(A) for the most active atom (H4) and the low-
est atomic fragility mode (�1). Eigenvectors for H4 and atoms within the same
atomic fragility mode (lowest energy) have been shown in Fig. 9.2(B). The nor-
malized eigenvector coefficients for other atomic modes and for other atoms in
the system have been collected in Figs. 9.3 and 9.4, respectively.
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FIGURE 9.3 The squares of the normalized eigenvector coefficients of atoms in the eigenvectors
for atomic modes �2–�5 in formamide, along the IRC for the internal proton transfer reaction.

9.6.3 Vibrational energy distribution in bonds

Eq. (9.26) allows for attribution of the vibrational energy to bonds and con-
tacts in the reacting system. This has been envisaged by calculating the Kξ

parameter (Eqs. (9.28) and (9.30)) traced along the IRC reaction path and the
principal results have been presented in Fig. 9.5. The vibrational energy con-
tribution has been dominated by the bonds undergoing changes N1- - -H4 and
O3- - -H4 (Fig. 9.5(A)). However, the method has been sufficiently sensitive as
to discover even the minute variations in other bonds and contacts playing a role
in this reaction (Fig. 9.5(B)).

While no results for this same reaction have been available in order to judge
the efficiency of the present method, the general feature of the characteristics
in Fig. 9.5 may be compared to the curvature diagrams reported by Kraka
and Cremer for the similar proton transfer reaction, namely S- - -C(H)OH →
HSC(H)- - -O [92]. The scalar curvature characteristics for bonds reported in this
work are dominated by the O–H bond cleavage at the reaction onset (ξ ∼= −1),
and by the S–H bond formation peak in the reaction decay (ξ ∼= 1). The analogy
to the shape, location, and role of the N1–H4 and O3–H4 curves in Fig. 9.5(A) is
striking, and calls for formal analysis of the relevance between the two method-
ologies for monitoring reaction progress.
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FIGURE 9.4 The squares of the normalized eigenvector coefficients of atoms in H2N–CHO
molecule for all atomic modes (�1–�5) along the IRC for the internal proton transfer reaction.
The uniform style of lines for the atomic modes has been indicated on the diagram C2. For H4,
consult Fig. 9.2(A).

9.6.4 Anharmonic parameter Aξ and major contributions from
bonds/contacts

The anharmonicity parameter for the reaction has been calculated according to
Eq. (9.31). Also, the individual contributions from all bonds and contacts have
been calculated; the major contributions have been collected in Fig. 9.6.

The next highest contribution from a bond (H4–H6) was by one order of
magnitude smaller than the lowest contribution envisaged in Fig. 9.6 (H5–H4
contact). The character of curves for the two bonds undergoing the change in
the proton transfer reaction (N1–H4 and H4–O3) is entirely defined by the cor-
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FIGURE 9.5 Major (A) and minor (B) contributions from bonds and/or contacts to the vibrational
energy measured by the bond components to Kξ constant (Eq. (9.30), in a.u.), along the reaction
path for the internal proton transfer in H2N–CHO. For the sake of clarity, the scale of the ordinate
axis in Fig. 9.5 (B) has been expanded (10×).

FIGURE 9.6 Contributions from bonds and contacts to the global anharmonicity parameter (Aξ ,
Eq. (9.31), in a.u.) along the reaction path for the internal proton transfer in H2N–CHO.

responding bond fragility spectra (aAB
ξ vs ξ ), as reported in previous work [95].

The relatively high contributions to overall anharmonicity parameter Aξ from
the two nonbonding contacts in the system (H4–C2 and H4–H5) is an interest-
ing novel discovery in this reaction.

9.6.5 Reaction fragilities for atoms and bonds

The principal atomic and bond fragilities for this system, defined as aA
ξ =

dCAA/dξ and aAB
ξ = −dCAB/dξ , respectively, have already been presented for

the reaction center, i.e., for the proton exchanging atoms [95]. It is now helpful
to recall the fragilities for all atoms in the system (9.6) as well as for all their
possible contacts (9.15), as they play crucial role in calculation of the anhar-
monicity parameters for the reaction Aξ and its contributions. Since the atomic
fragilities represent a sum of fragilities calculated for all bonds/contacts of each
atom aA

ξ = ∑
B aAB

ξ , it is now possible to detect the role of even minute distur-
bances induced to bonds by the reaction. The diagrams in Figs. 9.7–9.11 have
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FIGURE 9.7 Calculated reaction fragilities (in a.u.) for atoms N1 (A) and O3 (B) and for their
bonds/contacts along the reaction path for the internal proton transfer in H2N–CHO. The bond
fragilities for weak interactions of remaining atoms with N1 and O3 are shown on the diagrams for
the respective partners in Fig. 9.8–9.11.

FIGURE 9.8 Calculated reaction fragility (in a.u.) for H4 atom and its bonds/contacts along the
reaction path for the internal proton transfer in H2N–CHO. Note the contraction of the scale on the
ordinate axis by 1:2, with respect to the basic scale in Fig. 9.7 for N1 and O3 atoms.

FIGURE 9.9 Calculated reaction fragility (in a.u.) for C2 atom and its bonds/contacts along the
reaction path for the internal proton transfer in H2N–CHO. Two group of atoms have been separately
shown in the diagram for the sake of clarity as A and B. Note the expansion of the scale on the
ordinate axis by 2:1, with respect to the basic scale in Fig. 9.7 for N1 and O3 atoms.
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FIGURE 9.10 Calculated reaction fragility (in a.u.) for H5 atom and its bonds/contacts along
the reaction path for the internal proton transfer in H2N–CHO. Two group of atoms have been
separately shown in the diagram for the sake of clarity as A and B. Note the expansion of the scale
on the ordinate axis by 10:1, with respect to the basic scale in Fig. 9.7 for N1 and O3 atoms.

FIGURE 9.11 Calculated reaction fragility (in a.u.) for H6 atom and its bonds/contacts along
the reaction path for the internal proton transfer in H2N–CHO. Two group of atoms have been
separately shown in the diagram for the sake of clarity as A and B. Note the expansion of the scale
on the ordinate axis by 10:1, with respect to the basic scale in Fig. 9.7 for N1 and O3 atoms.

been segregated by atoms, hence the curves for the bond fragilities of some
atoms have been repeated. The strong interactions for bonds have been sepa-
rated from the weak ones for contacts and the ordinate axis has been adjusted
separately, with the scaling factor marked on each diagram.

9.7 Discussion: quantitative monitoring of a chemical
reaction

Two observations have been demonstrated for the specific model reaction of
internal proton transfer in formamide, selected as an instructive example for
assessing the method of computational monitoring atoms and bonds in reac-
tions: (i) the novel atomic fragility modes representing the potential tool for
evaluation the consequences of the structural modification brought about by the
reaction, (ii) the direct quantitative information on bond evolution provided by
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the fragility spectra with the anharmonicity parameters calculated on the reac-
tion path.

9.7.1 The role of atoms for the atomic fragility modes

The concept of the atomic vibrational modes opens a novel, original observation
point for chemical reactions. It is clear in Fig. 9.1 that all atomic modes are sub-
ject to change with regrouping of atoms. The lowest and presumably dominating
atomic mode (�1) is affected by the reorganization in the narrow range near TS
(−0.8 < ξ < 0.8), in a typical, symmetric fashion with a minimum at TS. On the
contrary, the high energy mode (�5) is only slightly affected by the reaction, its
gradual change covers the broadest range of the process (−1.5 < ξ < 2.5). The
impact of the reaction on the intermediate energy modes (�2, �3, �4) is signif-
icant, though rather unexpected. The energy of the (�2) mode is considerably
higher than (�1) mode near the reaction onset (Fig. 9.1). The energy of (�2)
rapidly decays by ca. 30% at the point where the changes in (�1) begin. The
reverse phenomenon is observed for (�3): its energy rises sharply by ca. 60%
at the endpoint of the minimum at (�1). The evolution of (�2) and (�3) modes
clearly indicates their active role in the reaction. Modification of the high energy
mode (�4) is remarkably large and broad, covering the range (−1.5 < ξ < 1.5),
suggesting a minor change of rather strong bonds. Quite interestingly, the TS
point seems to be significant mark for the (�1) mode only.

The above observation can be elucidated only by monitoring the participat-
ing atoms for each mode, the valuable result of this present work. Despite small
number of atoms participating in the chosen reaction, the distinction of atoms
into clearly separated groups is possible, with regard to their participation in the
reaction events, as understood with chemical intuition: (i) the mobile atom H4,
(ii) the affected atoms N1, H5, O3, and (iii) the spectator atoms C2, H6.

The squares of the normalized eigenvector coefficients for atoms provide
the much wanted information as they disclose the effect of switching atoms
between the modes, as the reaction proceeds. In the lowest energy mode (�1),
the mobile atom H4 has been found dominating in the vicinity of the TS point
(Figs. 9.2(A) and 9.2(B)) as expected. Its role in the structure of this mode in the
initial and final stages of the process is different. Near the RS state, the H6 atom
is a dominant of this mode; its role vanishes entirely near TS (Fig. 9.2(B)). The
H5 atom participation in (�1) mode, initially nearly as high as the one of H4,
falls down to zero at TS, then rises sharply, to meet the level of H4 at the end of
the process, with equal share in this mode (ca. 40%). The heavy atoms appear
to rest merely as spectators to this atomic mode.

The (�2) atomic mode is also characterized mainly by the participation of
protons, (Fig. 9.3, L2(�2)), with the significant, but small, maximum for the N1,
O3 atoms, and to some extent also C2 atom around TS. At the initial stage, H4
and H5 atoms contribute equally to (�2) mode, in the similar manner as they
do in (�1), but there is no share of H6 here. There is striking alteration of the



286 Chemical Reactivity

structure of this mode in its way to PS: at the end of the process, the H6 atom
will dominate (70%). The initial symmetry in the contributions from H4 and
H5 atoms and unique position of H6 atom in two lowest atomic modes is in
harmony with the chemical character of the formamide molecule.

In the initial stage (RS), the (�3) mode is close the (�2), but its structure is
considerably different (Fig. 9.3, L2(�3)). This mode involves initially the -CHO
group of the molecule with only H6 and O3 atoms playing a role, until past the
TS state (ca. ξ ∼=1). At this final point, contributions from O3 and H6 atoms are
reduced to by 60% and they are replaced by H4, N1 and C2 atoms in roughly
equal shares. The effect of the reaction is fully exposed by this change: the ini-
tially isolated –CHO group has been transformed to the coupled - - -N=CHOH
entity.

The structure of the (�4) atomic mode observed in Fig. 9.3, L2(�4) well
explains the remarkable change in the reaction and the broad range of bond
modification along the reaction path. At the initial stage (RS) the mode charac-
terizes the N–C–O skeleton, with N1 atom strongly dominating. This will not
change substantially until towards the end of the reaction (ca. ξ ∼=1) where the
O3 atom takes the lead, the contribution from C2 vanishes (C2 atom switches to
�3 mode, see above) and H4 atom joins the band, –N–C–OH. Further, (�4) is
the highest atomic mode where the reaction events have been marked: they are
hardly noticed in the (�5) atomic structure in Fig. 9.3, L2(�5).

The variations of the atomic contributions to the eigenvectors calculated for
the atomic modes as described above reveal their role in the process even bet-
ter, when they are grouped by atoms, rather than by the modes. This has been
shown in Fig. 9.4 for the skeleton atoms, in addition to Fig. 9.2(A) drawn for
the moving H4 atom separately.

The panorama of atomic participation in the eigenvectors presented in
Fig. 9.4 provides very instructive picture of the reaction mechanism. First, it
becomes evident that the hydrogen atoms (H5, H6) serve as sensors for the ac-
tual changes introduced along the reaction path, even if they do not play directly
a role in this process. Drifting H4 away from the N1 nitrogen is dramatically
sensed by H5 and H6 atoms; docking H4 at O3 is manifested sharply by the
distant H6 atom. Two heavy atoms (N1, C2) do not show dramatic alternation
in their involvement in any of the atomic modes, despite the evident changes in
their bond structure, that is,

H2N–C(H)=O → HN=C(H)–OH.

The N1 and C2 atoms participate with the considerable contribution only in the
highest energy modes (�4, �5); the significant role of O3 atom for (�3) mode
marks clearly its active role for the reaction. The role of H5 and H6 atoms in
the lowest atomic modes (�1, �2) could hardly be noticed by other observation
methods.
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9.7.2 Contributions from bonds/contacts to the vibrational energy

Quantitative parameters Kξ and Aξ calculated for the reaction path open a
chance for new characterization of contacts between atoms in a system under-
going a reaction, by testing the stepwise evolution of their contributions to the
vibrational energy along the way. Unlike the atomic and bond parameters de-
scribing inherent properties of a stationary system (e.g., CAA, CAB ), the bond
contributions to Kξ and Aξ report the energy required to make a step on the
“optimal” path from reactants to products.

Contributions to the vibrational energy demonstrated in Fig. 9.5(A) indicate
that at the initial RS state, most of the energy change is localized in the NH2
group, and it is distributed in nearly equal parts between N1–H4 and H5–N1
bonds, with a small admixture from N1–C2 bond (Fig. 9.5(B)). The situation is
only partially reversed in the final PS state: the energy change is localized largely
in H4–O3 bond, however, the share of N1–H5 bond is recovered, after falling to
zero near TS. The N1–C2 skeleton bond follows this trend, reaching at PS the
level considerably higher than it has been at RS (Fig. 9.5(B)), as its formal bond
order is increased. The nonbonding contact between C2 atom and the moving
proton H4 must somehow play a role in the process (Fig. 9.5(A)), as it seems
to introduce an element of stiffness to the system, considerably decreasing the
vibration energy around TS. Otherwise, the skeleton atoms play little role in the
process, with O3–C2 bond barely sensing the events (Fig. 9.5(B)), despite evi-
dent decrease of its formal bond order; the impact of the process on the C2–H6
bond is larger. Among the noticeable variation in Fig. 9.5, the H4–H5 contact
deserves mentioning: it is loosened at the reaction onset, and it is recovered,
somewhat unexpectedly, in the TS region as if another link between two atoms
were created even before PS.

The meaning of the reaction anharmonicity curves Aξ and the bond contri-
butions thereto in Fig. 9.6 is less intricate than of the force constants in Fig. 9.5.
High values of this parameter are convincingly associated with the running pro-
cess of bond alternation in a system. It may be bond rupture (negative values)
or bond creation (positive values). Significant values of the bond components
reported in Fig. 9.6 are only few – apparently, the reaction is dominated by the
N1–H4 bond breaking and O3–H4 bond creation. All noticeable contributions
from bonds to Aξ involve the links of H4 atom with all but the isolated H6 atom.
The role H5–H4 contact, though marginal in this process, confirms the role of
protons, being potential sensors for the electronic process nearby.

In order to complete the analysis of Kξ and Aξ derivatives, it is instructive to
appraise the role of the distance factor DAB = |dRAB/dξ |2 in Eqs. (9.30) and
(9.31). It contains valuable information on the degree and direction of change
in bond distances on the subsequent reaction steps, even though it is determined
with the limitation of the IRC reaction path. The characteristic features of this
factor have been illustrated by the sample diagrams (Fig. 9.12). The D value
tends to be nearly constant in the distinctly separated regions, with the bor-
derlines for the central TS region ca. (−1.5 < ξ < 1.3); DAB for all contacts
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FIGURE 9.12 The distance factors DAB = |dRAB/dξ |2 [a.u.] in Eqs. (9.30) and (9.31) for the
selected bonds variable with the internal proton transfer in NH2–CHO.

involving the mobile H4 atom distinctly increase in the central region, DAB for
other contacts are all negligibly small and slightly decreasing around TS; only
one, most significant representative of this group has been brought to the picture
(N1–H5, Fig. 9.7).

9.7.3 Sensitivity of the bond fragility analysis

The bond fragilities presented in Figs. 9.7–9.11 fall into three separate cate-
gories. The first represents the bonding interactions, considerably altered by the
process: H4–N1, H4-O3 (Figs. 9.7 and 9.8). They show strong maxima/min-
ima in their fragilities that dominate the change in the fragility of respective
partner atoms and indicate the critical points on the reaction path, where the
process driving the reaction really occurs. The striking similarity between the
anharmonicity diagram for the active bonds (Fig. 9.6) and their bond fragilities
(Fig. 9.8) proves the leading role of aAB

ξ over DAB factor in Eq. (9.31).
To the second group belong the bonds of considerably smaller fragilities (ca.

by a factor of 1/5), but still indicating explicit participation in the electron ex-
change in the reaction: C2–N1 and C2–O3 (Fig. 9.7). Interesting information
can be clearly deduced from Fig. 9.9(A): breaking the H4–N1 bond (Fig. 9.7) is
associated with increase of the C2–N1 bond order for a moment, while O3–C2
bond suffers a parallel decrease (Fig. 9.9(A)). It is rather unexpected that the
H4–C2 nonbonding contact also falls into this category, this contact too is bro-
ken at the initial phase of the reaction (Fig. 9.9(B)) and is restored as soon as
the H4–O3 bond is formed (Fig. 9.8). Surprisingly, the H4–C2 bond share in
the vibrational energy of the system appears to be negative for this bond in the
TS region (Fig. 9.5(A)). The C2–N1 bond gains more strength near the end of
the process (Fig. 9.7(A)), while the C2–O3 bond does not (see Fig. 9.7(B)): the
well-understood chemistry of this process is formidably illustrated by the above
diagrams inasmuch as C2–N1 and C2–O3 bonds are considered. On the other
hand, the nonnegligible interaction between the moving proton H4 and C2 atom
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is an intriguing discovery of the method. The contradictory changes around C2
atom explain the flat curve for the fragility of this atom (Fig. 9.9).

The third group of bond fragility curves incorporate the remaining bonds and
contacts in the system; they all are clearly described, despite being by an order of
magnitude smaller that the former. The H5–N1 bond (Fig. 9.10(A)) and H6–C2
bond (Fig. 9.9(B)) belong to this category. The former is clearly undermined by
the process in the initial phase (Fig. 9.10(A)), so is the latter, but at the end of
the process (Fig. 9.11(B)). Almost as strong a change as for these two bonds is
observed for the H5–H4 contact (Fig. 9.10(B)) building up and H5–O3 contact
falling dawn (Fig. 9.10(A)), despite the shortening the N1–H5 contact clearly
observed in D factor of that bond (Fig. 9.12). The seemingly isolated H6 atom
strengthens its bond to C2 (Fig. 9.11(A)), its interactions with other protons in
the system are hardly noticeable on its fragility diagrams.

9.7.4 Summary of the indicators for monitoring reactions

Our theoretical and computational analysis of the chemical reaction delivers un-
derstanding of its fine details. Here we have presented a systematic review of
the utility of the novel tools, accessible with the computational quantum chem-
istry methods. With the use of the cumulative force constants CAB , the method
allows assessing the bond stability, rather than the bond energy, in some sort of
analogy to the standard normal mode analysis. There are two important advan-
tages in our reaction fragility approach over the normal modes evolution along
the reaction path: (i) reaction fragilities are given by the electron energy exclu-
sively and (ii) they are focused directly on atoms and bonds, the indispensable
objects for chemical considerations.

The eigenvalues and eigenvectors for the lowest atomic fragility modes for a
system provide the first indication on the location of the reaction center, and also
allow for detection the outreach of the process to atoms affected, though distant
from a reaction center. Further global insight is provided by the global electron
energy derivatives Kξ and Aξ . It is interesting to note that in the atomic units,
the numerical values of the elements of the DF connectivity matrix and their
derivatives cover the orders of magnitude convenient for the facile comparison
between various systems and reactions. The nature of Kξ and Aξ indicators is,
however, different from the two basic global indicators: the trace of the con-
nectivity matrix and its derivative known as the reaction fragility, T rC and
aξ = d(T rC)/dξ , respectively. These two allow for observation of a system in
an electron stationary state, whereas the Kξ and Aξ contain an additional infor-
mation on the reaction path: the DAB factor that includes the distance changes
on a step. Hence, Kξ and Aξ characterize a nature of the particular step on IRC,
rather that the system itself.

The atomic and bond fragilities are two types of indicators for observation
the individual atoms, the natural components of any reacting system. As demon-
strated on the example (Section 9.6.5), they describe convincingly the degree of
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coupling of an atom in a particular position in a molecule, not only by a bond to
particular neighboring atom, but through the electronic interactions, to the com-
plete network of atoms in the entire system. Together with the squares of the
normalized atomic coefficients of the eigenvectors, they provide most valuable
information on the role of every atom in the transition process from reactants to
products.

The tools for observation of bonds in a reacting system are complementary
to those developed for atoms. The bond fragilities aAB

ξ = −dCAB/dξ describe
the variations in the bond orders, as the elements CAB have the familiar mean-
ing of the cumulative force constant for particular bonds, with their meaning
limited to the electron energy. As demonstrated in Section 9.6.5 and discussed
in Section 9.7.3 for the internal proton transfer in formamide, the bond fragili-
ties are sensitive indicators of the interactions even as weak as between the two
hydrogen atoms separated by a chain of 2–3 other atoms. This appears to be
more attractive for the chemical discussion of the electron density modification
in a reaction than the calculation of the actual force constants for the virtual
oscillators (the normal modes).

The energy analysis presented in this work provides a new tool for obser-
vation bonds as they are created or modified in reactions. The DAB parameters
calculated for bonds might serve as detectors of the actual limits for a process
on a reaction path – the points of its onset and decay. They also clearly point out
to the moving atoms in a system discerning them from the ones that are merely
adapting.

The bond components to the Kξ value provide possibly the most perspicu-
ous view of the changes in a reacting system, by discerning the energy inputs
required not only for a bond creation or rupture, but also for tiny modifications of
any contact between atoms in a system. The sequence of the oncoming reaction
events is also clearly illustrated by these bond components. The components of
the associated third derivative of the energy (Aξ ) are considerable less sensitive
probes for a reaction. They do, however, discern between the bond breaking and
bond formation process, therefore, they may play an essential subsidiary role in
describing a reaction mechanism.

9.8 Conclusions and perspectives

The methodology presented in this work has been built on the computational
results available in the Cartesian Hessian, the concept is parallel to that pre-
sented by Seminario in his FUERZA method [83]. This author demonstrated
how to derive the internal force constants for chosen bonds and angles (with
sufficient accuracy), by the procedure beyond the normal mode analysis. The
goal of this present work is similar, however it is considerably broader, more
intricate, and reaching deeply into the nature of the interactions between atoms.
The Cartesian Hessian has once again been explored as a reliable source of data
with facile computational access. By exploring the vector analysis (divergence
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of force, rather than the ordinary derivatives), the Cartesian Hessian (3n × 3n)
is contracted to the Density Functional connectivity matrix (n × n) whose el-
ements not only describe all mutual interactions between atoms nested inside
their molecular environment, but also report the electronic energy exclusively.

This effect has been first noted by W. T. King in his early works [47–49].
The author had described the frequency sum rule and understood the electronic
energy behind it [47]: “the effective Cartesian force constants found by this
sum rule are independent of the nuclear repulsion energy and consequently
depend only on the electron distribution in the molecule.” An additional con-
clusion deals with the Born–Oppenheimer approximation inherent in his work.
“Because the nuclear-repulsion energy, (. . . ) is an additive term in the potential
function and because it satisfies Laplace’s equation, it will vanish in the cal-
culation of [∇2E] by any method. (. . . )” [48]. The far reaching consequences
of King’s findings have not been explored until in this present work. The exist-
ing apparatus of the Conceptual DFT and the contemporary computational tools
allowed for the development both of the theory and applications of this effect
oriented for practical chemistry.

By defining the DF connectivity matrix and by formulation of the H–F force
divergences in the language of the Conceptual DFT, an extension has been ac-
complished for the King’s formula presented in the language of physics. A con-
nection between the matrix elements of purely electronic nature and the linear
response function has been demonstrated [46]. The break-through in the theory
has been achieved by exploring the general property of the density function, the-
oretically proved by S. Liu et al. [80] (cf. Appendix 9.A.2). Its application to the
DF Connectivity Matrix resulted in the uniform formulation of the matrix ele-
ments (Scheme 9.1). The original gradient theorem equally applicable for open
and closed systems (Eqs. (9.6) and (9.12)) has been developed on this ground.
With the above findings, the vibrational energy term in the energy expansion has
been proved to be purely electronic in its nature.

There are important consequences of the above result, to name a few. The
vibrational energy can now be expressed as a sum of contributions from bonds
and contacts between atoms, much in the spirit of chemical discussions of their
properties. That resolves the problem raised by Seminario [83], and recently
discussed by S. Racioppi et al. [101] referring the methods for the breakdown of
interaction energy, an important tool to understand chemical bonding. By prov-
ing the DFT formulae for the elements of the DF Connectivity Matrix CAA,
CAB (Scheme 9.1) an a priori quantitative method for description of atoms and
bonds has been achieved. This finding tends to undermine the assertion once
expressed by Parr and Nalewajski: “the atom in a molecule cannot be directly
observed by experiment, nor can one measure enough properties of an atom in a
molecule to define it unambiguously” [14]. Properties of an atom may, nonethe-
less, be quantified by present reaction fragility method focused on interactions
of the actual density function with an atomic nuclei. (A similar point of view has
been a source of the nuclear magnetic resonance method.) We present the energy
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analysis that leads to diagonalization of the energy matrix in atomic resolution;
this is formally parallel to the Charge Sensitivity Analysis (CSA) by Nalewajski
et al. [43,44,102]. However, unlike the CSA method where atomic populations
have been assigned to atoms with a selected arbitrary definition, the electronic
energy function in our approach rests entirely on the physical and computable
quantities, namely electric field vector and H–F forces.

The observation method for variable bond orders and atomic valences on a
reaction path is the valuable practical application of the DF Connectivity Matrix
[52,63,72]. We have proved that the derivatives of the DF connectivity matrix
elements with respect to the reaction progress parameters (Reaction Fragilities)
serve as fine probes of the electron density evolution upon a reaction. This ob-
servation is focused directly on the valence region of a reacting molecule, as
it has been noticed by Salem, that core electron region of the spherical sym-
metry does not contribute to the electronic H–F force acting on a nucleus [51].
The energy analysis presented hereby provided the justification for the Reaction
Fragility Method: the bond fragilities represent a measure for the anharmonicity
of bonds and contacts in the actual configuration of the nuclei at the corre-
sponding stationary state of the electron density. In the chemical language,
anharmonicity can be translated as the susceptibility of a bond to changing its
strength, the formidable point of view for a chemist interested in transformations
of molecules – chemical reactions.

The theoretical results may also facilitate the deeper understanding of the
mechanism of the molecular transformation. The first and dominating term in
the energy expansion (Eqs. (9.25) and (9.28)) is the reaction force work; the
energy required to shift the nuclei to new positions on a reaction step. In an ac-
tual reaction, this energy is likely to be provided by a collision, resulting in a
nonequilibrium excited state (vibrational or electronic) and possibly the starting
point for further process leading to a new state of equilibrium. In order to ap-
ply the reaction fragility analysis to monitoring the electronic structure of such
system on its way, the coupling with the direct dynamics simulation might be
considered [103]. Combining with the reaction fragility method would open the
direct dynamics simulations to exploration by chemists and could allow widen-
ing the studies on reactions beyond the IRC regime.
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Appendix 9.A Auxiliary notation and proofs for the relations
appearing in the text

9.A.1 Notation

The following notation for electron density gradients and the electric fields has
been adopted throughout the paper:

∇ρ(r) = ∂ρ(r)
∂r

, (9.A.1)

∇Av(r) = ∂v(r)
∂RA

= −εA(r) and �v(r) = −
∑
A

εA(r) · �RA. (9.A.2)

If not marked otherwise, the following equivalent notation for the density gra-
dient is used:

∇Aρ(r) =
[
∂ρ(r)
∂RA

]
N

= [∇Aρ(r)]N . (9.A.3)

9.A.2 Proof of Eq. (9.1)

Explicit relations between the divergences of H–F force (Eqs. (9.1) and (9.3))
and the electron density function have been demonstrated in the previous paper
from this laboratory [46] as

CAA = (∇A · FA)N = 4πZAρ(RA) +
∫

εA (r) · [∇Aρ(r)]N dr, (9.A.4)

CB �=A = (∇A · FA)N =
∫

εA (r) · [∇B �=Aρ(r)
]
N

dr. (9.A.5)

An equation equivalent to (9.A.4) was first reported by King [48]. The role of
density at the nucleus in Eq. (9.A.4) has been unclear since ρ(RA) �= 0 [104,
105]. It may be eliminated, by exploring the general result elaborated by Shu-
bin Liu et al. [80],

ρ(RA) = − 1

4π

∫
(r − RA) · ∇ρ(r)

|r − RA|3 dr. (9.A.6)

By using this result, Eq. (9.A.4) is transformed to a novel form containing the
electron density function ρ(r) as the only variable parameter; it is now anal-
ogous to the expression for the nondiagonal elements of the DF connectivity
matrix (Eq. (9.1), main text),

CAA =
∫

εA(r) · [∇ρ(r) + ∇Aρ(r)]dr. (9.A.7)
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Since for a single atom ∇ρ(r) = −∇Aρ(r), Eq. (9.A.7) properly explains why
CAA = 0 for a noninteracting atom, otherwise CAA > 0, as has been demon-
strated.

Another valuable conclusion arises when properties of the density gradient
are recalled. The integral in Eq. (9.A.7) calculated for an atom can be finite
if and only if limr→0 [∇ρ(r) + ∇Aρ(r)] = 0 since εA(r) → ∞ for r → 0.
Since the cusp condition requires ∇ρ(0) to be finite, an additional general con-
dition emerges for the electron density at a nucleus, namely limr→0 ∇ρ(r) =
− limr→0 ∇Aρ(r). This condition appears to be independent on the state of
bonding of atom, as is the cusp condition itself.

9.A.3 The dyadic product of vectors (Eq. (9.15))

[∇B ⊗ FA] ≡
⎡
⎣∂FAx/∂RBx ∂FAy/∂RBx ∂FAz/∂RBx

∂FAx/∂RBy ∂FAy/∂RBy ∂FAz/∂RBy

∂FAx/∂RBz ∂FAy/∂RBz ∂FAz/∂RBz

⎤
⎦ . (9.A.8)

9.A.4 Proof of Eq. (9.26)

The essential property of the DF connectivity matrix is used first,
∑

A CAB = 0.
Then

∑
A

∑
B

(�RA · �RB)CAB =

=
∑
A

∑
B �=A

(�RA · �RB)CAB +
∑
A

(�RA)2 CAA =

=
∑
A

∑
B �=A

(�RA · �RB)CAB −
∑
A

(�RA)2
∑
B �=A

CAB.

(9.A.9)

Since CAB = CBA, the first term in this result becomes

∑
A

∑
B �=A

(�RA · �RB)CAB = 2
∑
A

∑
B<A

(�RA · �RB)CAB. (9.A.10)

The second term of the result (Eq. (9.A.9)) may be divided into two equal parts:

∑
A

(�RA)2
∑
B �=A

CAB =
∑
A

(�RA)2
∑
B<A

CAB +
∑
B

(�RB)2
∑
A<B

CBA.

(9.A.11)
Summations over A and B in Eq. (9.A.11) are equivalent, hence by substituting
Eqs. (9.A.10) and (9.A.11) into Eq. (9.A.9), and selecting the pairs AB, leads to
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the final result:

2
∑
A

∑
B<A

(�RA · �RB)CAB−

−
[∑

A

(�RA)2
∑
B<A

CAB +
∑
B

(�RB)2
∑
A<B

CBA

]
=

= −
∑
A

∑
B<A

CAB

[
(�RA)2 − 2�RA · �RB + (�RB)2

]
=

= −
∑
A

∑
B<A

CAB (�RA − �RB)2 = −
∑
A

∑
B<A

CAB |�(RA − RB)|2

= −
∑
A

∑
B<A

CAB |�RAB |2

.

(9.A.12)
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