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9.1 Introduction: the search for atoms

The formal structure of the Conceptual Density Functional Theory (CDFT) has
expanded over the years to the well-organized, quasithermodynamic system
concentrated on exploration of the energy functional E[p(r)] in quantifica-
tion of properties of molecules. The global quantities characterizing atomic
and molecular entities are [1-4]: chemical potential u = [0 E/dN],, hardness
n =[02E/ON?] . and sofiness S = 1/n. The local quantities describe a re-
sponse of the density function to the change in N or u, namely Fukui function
f({@)=[0p(r)/0N], and local softness s(r) = [dp(r)/du],. Contracting these
local quantities to atoms bonded in molecules has long been recognized as
an important challenge on the way to CDFT applications in practical chem-
istry. However, the results have been limited to various types of approximations
[5-12], far from expectations of chemistry where the reality of bonded atoms
has been a cornerstone for consideration of reactivity. The difficulty has long
been recognized: neither the QTAIM method [13] nor the Hirschfeld partition
had produced more than a ‘noumenon’ — “an object of purely intellectual intu-
ition (...) subject to arbitrary (but disciplined) personal choice when specificity
is desired” [14].

For practical reasons, the closed-system representation (canonical ensemble)
has been dominating in the analyses, E [N; v(r)]. The linear response function
(LRF), combining the electron density p (r) and the external potential v (r) in a
closed system containing N electrons, has been most naturally introduced as a
functional derivative playing the key role in the chemistry oriented analyses [1]:
o, r) = [5,0 (r) /v (r’ )] N The properties of this kernel function have been
subject of many studies concentrated on bonded atoms by observation of the
polarization of the electron density p (r) in a system upon disturbing the local

Chemical Reactivity. https://doi.org/10.1016/B978-0-32-390257-1.00016-4 263
Copyright © 2023 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/B978-0-32-390257-1.00016-4

264 Chemical Reactivity

external potential 6v (r’ ) Geerlings et al. have demonstrated how the fundamen-
tal notion of LRF has been tentatively explored in analysis of local properties of
atoms-in-molecules [15]. Boisdenghien et al. have presented an electron energy
expansion in the Taylor series; attractive two- and one-dimensional projections
of the LRF as w (r, 0) for atoms have resulted [16,17].

Another approach to LRF by the above authors was aimed via polarizability
of atoms and molecules that has been reasonably reproduced by using com-
putable results for w(r,r’) [18]. The formal link between the LRF and the
polarizability tensor has been first proposed by Vela and Gazques [19]. It was
dwelled upon by other authors [20,21] and the polarization-justified Fukui in-
dices have been developed on this ground by Komorowski et al. [22]. The LRF
condensed to atoms has been proposed by Sablon et al. by an arbitrary integra-
tion of the w (r, 1) kernel; the result has been explored to quantify inductive and
resonance effects [23].

The new perspective for discerning atoms in the CDFT formalism has been
opened by exploration of the Hellmann—Feynman (H—F) forces on the nuclei.
In the absence of external fields other then from atomic nuclei, the disturbance
in the external potential Av (r) is uniquely defined by shifts of the nuclei in
a system {AR;}. Consequently, alternative representations for the closed and
open systems have been introduced E [N;{R}] and E [u; {R}] [24-27]. En-
ergy derivatives over displacement of nuclei AR; in these representations have
fundamental physical meaning of force, force constant, and anharmonicities
associated with displacement of atomic nuclei. They all directly describe prop-
erties of atoms bound within the system and characterize atomic contacts. Since
forces are entirely determined by the electron density function, there is no need
to artificially condense any local quantities for determining properties of indi-
vidual atoms.

The original concept of the Hellmann—Feynman force uniquely identifies
atomic nuclei in molecules [28,29], Fy = —V7E = Fi‘[ + F{". Early consid-
eration of the origin of forces and consequences thereof have been provided
by Nakatsuji [30,31]. The link between the H-F forces and the CDFT formal-
ism has been first shown by Cohen et al. [32], the authors also introduced
the new derivative of chemical potential under the name nuclear reactivity,
®4 = (0FA/9IN) gy = —Vap. The concept has been explored by other authors,
however, initial hopes for directly indexing reactivity of bonded atoms by ® 4
were in vain [26,33,34]. In the latest work by Laplaza et al., the coupling be-
tween the orbital energies and the shifts of the nuclei has been analyzed [35].

The nuclear stiffness has been introduced as the next corresponding deriva-
tive of global hardness by Ordon et al. as an extension of this idea, namely
Ga = (0°F4/9N?) & = Van [25]. The whole body of energy derivatives in
the representation of atomic coordinates both in the closed (N = const.) and
open (i = const.) systems has been formulated; their renormalization has also
been demonstrated [36,37]. The vital result of that effort focused directly on
atoms identified by the H-F forces was the discovery of vibrational softening of
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molecules by the authors of this work [38—40] with perspectives for applications
to explosive reactions [41]. The linear response function has been essential for
bridging the energy derivatives in the basic CDFT formalism and their counter-
parts built on E [N; {R}] function [42].

A significant contribution to the theory on the role of atoms in chemical re-
activity has been elaborated by Nalewajski [43,44] with the goal to: “understand
the subtle interplay between the geometrical and/or electronic degrees of free-
dom of both isolated molecules and the reactive systems” [45]. The coupling
has been described in the atomic discretization at the CSA level, originally pro-
posed by Nalewajski [43]. This sophisticated approach has been founded on the
electron preceding perspective (“‘chemical thinking”) and had by necessity com-
bined the basic parameters from two nonequivalent sources: the exact positions
of nuclei and exact forces thereon have been used in parallel to the popula-
tions of the point-atoms, reasonably calculated (albeit arbitrarily defined) from
the equalization of the chemical potential in the system. The lasting value of this
analysis was in formulating the geometrical minimum energy coordinate (MEC)
concept for tracing the changes in electronic structure of a reacting system.

9.2 Exposing the electron energy by the force constants
analysis

Recently we have exposed the fresh practical power of the application of the
vector analysis to the derivatives of the H-F force along a defined reaction path
(IRC), meeting the MEC condition. We have found that the divergence of H-F
force contains solely the electronic energy of a system, since nuclear—nuclear
contributions vanish by the Laplace law [46]. This valuable property has been
first mentioned by King et al. as the frequency sum rule [47-49]. The authors
attempted to characterize bond properties with the use force divergences calling
them effective force constants and noticed that the electronic energy contributes
exclusively to the divergence of the H-F force. Decius and Wilson also used
that sum rule, however, their work has been limited to the isotopic effects [50].
The even earlier deep analysis by Salem contained the clear formulation for the
derivatives of the H-F forces [51].

We have established that the H-F force divergences calculated along the re-
action path, represent a potential source of quantitative information on evolution
of the electron density within a reacting system [52]. This is definitely an ap-
proach from the atomic and bonding perspective. The H-F force divergences for
any system of n atoms form the novel DF Connectivity Matrix C that describes
electronic properties of the system in the long desired atomic resolution. This
DF Connectivity Matrix has a different meaning than the old, arbitrary concept
of the Atomic Connectivity Matrix (ACM) first proposed by Spialter [53,54] and
developed by his followers within the graph theory [55-59]; the idea has been
applied even to an analysis of crystal structures [60], with appropriate modifica-
tions as to reflect the bond valences [61].
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Our DF Connectivity Matrix delivers theoretical description of the atomic
valences and bond orders providing readily available and exact numerical data
[62]. We obtain the elements of the DF Connectivity Matrix elements (C44,
Cap — cumulative force constants) in the harmonic approximation by appropri-
ate summation of the elements of the Cartesian Hessian. The harmonic oscilla-
tor’s regime seems to be limiting; however, when C44 and C4p are calculated
for a sequence of stationary states along the IRC, their step-by-step variations
unveil the process beyond the harmonic condition: modification of atomic bonds
(and valences) as a result of the ongoing chemical reaction. This straightforward
method to picture the mechanism of the chemical reaction leads to the analogous
results [63] as observations of the reaction path curvatures provided with the
advanced normal modes considerations by Kraka et al. (adiabatic internal vibra-
tional mode AIMO [64]), within their unified reaction valley approach (URVA)
[65-71].

Recently we have investigated in depth the derivatives of the elements of
the DF connectivity matrix over reaction progress (dCaa/d&, dCap/d§). The
working term Reaction Fragility (RF) has been adopted for those derivatives
[52]. They were found to reproduce very accurately the evolution of common
atomic properties along a reaction path: the evolution of the atomic valence
and the bond orders, respectively [63,72]. The atomic fragilities also provide
proper measure for the contribution of an atom to the global reaction force [73]
Fe =dE/d§.

Since the H-F forces themselves, as well as their divergences, are readily
available in standard quantum chemical computations, the method can be rou-
tinely applied for monitoring and imaging changes in reacting systems, traced
along a reaction path. For this task we have applied the IRC formalism [74-76].
The spectrum-like diagrams of changes along a reaction have also been demon-
strated for the potential energy of bonded atoms, naturally apportioned as frac-
tions of the potential energy of a system [77]. The method provides description
of atoms and their bonds with no need for the common arbitrary definitions
assigning atomic volumes or populations [78,79].

We devote this present article to revealing links between the reaction fragility
formalism based on the DF Connectivity Matrix, and the theoretical framework
of conceptual DFT where the density linear response function plays central
role. Novel properties of the electron density function that can be deduced form
the DF Connectivity Matrix formalism have been presented first (Section 9.3).
The link between the CDFT derivatives and their counterparts in the reaction
fragility analysis is outlined. The energy expansion has been presented in the
representation E [N; {R}]; it is followed by an interpretation of the role of DF
Connectivity Matrix in tracing the vibrational energy attributed to individual
atoms. The atomic fragility modes, an alternative to the normal mode analysis,
have finally been presented (Section 9.4). Application to a chemical reaction
within the IRC formalism follows in Section 9.5. The numerical analysis of
the proton migration in formamide molecule has been presented for the sake of
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illustration the power of the atomic fragility modes in monitoring the role of
atoms in a reaction (Section 9.6).

9.3 The electron density gradient in the DF connectivity
matrix formalism

Recently we have derived direct relations between the force divergences essen-
tial for the Reaction Fragility concept and the electron density gradient [77]. We
consider here a molecule as the system of atoms in an electronically stationary
state, with no external field, other than generated by the nuclei in the system.
The divergences of H-F forces in a molecule built with n atoms form the n x n
DF connectivity matrix. As we have recently demonstrated, the elements of the
connectivity matrix are exactly [77,80]:

Can=V4-Fy Z/é‘A(r) [Vo(r) +Vap)ldr, .1
Cpxa=Vpxa -Fa= /EA (r) - [VBap(r)]dr. 9.2)

For the specific notation and derivations, see the Appendix 9.A.1 and 9.A.2,
respectively. The sum rule has also been established, ), Cpa =), Cpa =0,
hence Caa = —3 54 Cpa [46].

9.3.1 From the DF connectivity matrix to the electron density
gradient

By combining the above sum rule with Egs. (9.1) and (9.2), a novel condition
for the stationary electron density has been noticed, namely

/eA(r) : |:V,0(r)+ZVB,0(r):| dr=0. 9.3)

B

This condition is general and no symmetry restrictions have been invoked. Since
the solution for p(r) in Eq. (9.3) must be unique [81], and Eq. (9.3) holds sepa-
rately for every atom (A) in a system, the natural property of the electron density
in an external field from all nuclei emerges is

Vo) =~ Vo). 94)
B

Eq. (9.4) represents potentially important property of the electron density in
a system of atoms. For a single atom, it is reduced to the sound identity,
Vp(r) =—Vpp(r). Eq. (9.4) may be transformed into the more specific form,
as the density gradient above V p p(r) has only been conceived here as a deriva-
tive with no other condition specified. In the closed (canonical) system, it is
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conveniently expressed by the electronic response function [46],

5 dv(r’
[Vep@)]y = / [af((:))} ;l(;)dr’z— / w(r, P)eg)dr.  (9.5)
N

Hence, Eq. (9.4) leads to a new relation between the density gradient and the lin-
ear response function, never exposed hitherto, to the best knowledge of authors,
namely

V,o(r):/a)(r, re)dr' . (9.6)

Here e(r’) = >z ep(r) is the electric field from all external sources (nuclei
only). This gradient theorem (Eq. (9.6)) provides the novel and much needed
interconnection between the electric field and the density gradients, as discussed
by Bader on numerous examples [13].

The proof of Eq. (9.6) is straightforward within the CDFT framework, it
provides a rationale to the conclusion from Eq. (9.4). By definition, the linear
response function in a closed system is w(r, r') = [8,0 (r)/8v(r’)]N. Hence,

fw(r, r)e(r)dr = / |:8,0(r):| Vo@)dr =
N

Su(r') 07
_ ([0 dva) '
_/[av(r,)h o = V().

9.3.2 Equivalence of the open and closed systems

The density gradient Vp(r) must not depend on the way it has been cal-
culated. Hence, an alternative for Eq. (9.5) must be checked in the grand-
canonical ensemble, appropriate for an open system with the softness kernel
s(r,r')=—[8p(r) /8v(r/)]u, that is,

5 dv (¥’
[Vep()], = / [55 ((:/))] ;liz)dre / s, )ep@)dr.  (9.8)
"

This is analogous to Eq. (9.5), however, [Vpp(r)]y and [VBp(r)]M are not
identical, as can be demonstrated using the well-founded and exact Berkowitz—
Parr relation [82], between the response function w (r, r’) and the softness kernel
s(r,r’),

w(r, 1) =—s(r, ') + Sf () f (). 9.9)

By using this in Eq. (9.5) and applying Eq. (9.8), the difference between gradi-
ents calculated in two alternative systems is exposed as

[Veo®]y =[Vap )], —s)Pp, (9.10)
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where s(r) = f s(r, r')dr’ is local softness and ® g stands for the nuclear reac-
tivity vector. Its connection to the Fukui function is well founded (Eq. (9.11))
[25,26]:

dFp
/f(r)EB(r)dr _<I>B_<8N )W) 9.11)

Eq. (9.6) for the density gradient V p(r) is alternatively formulated in an open
system as

Vo) = —/s(r, re)dr' . (9.12)

By subtracting expressions in both systems (Egs. (9.6) and (9.12)) then using
Eq. (9.9), it is straightforward to show that both representations for the density
gradient are equivalent. The difference between both vanishes, as expected:

s(r) / F(@)e)dr = s(r) / @)Y ep)dr' =s(r) Y @5 =0, (9.13)
B B

where Y 5 ®p = 0 since the sum of all forces acting on the nuclei vanishes,
> g Fp=0[46].

9.4 The energy expansion in E[N;v(r)] and E[N; {R}]
representations

Two sets of energy derivatives have been collected for the use in the elec-
tronic energy expansion: the local functional derivatives over external potential
8/8v(x’) typical in the CDFT formalism, and the corresponding vector deriva-
tives over atomic positions, Vp = 9/dRp. The relations between these two types
of derivatives have been presented first, and their much different nature has been
emphasized. Derivatives in the E [N; {R}] representation are observables char-
acterizing well-defined atoms and their links in a closed system. Direct relations
between these physical derivatives and local derivatives represent an alternative
to condensation of the local derivatives to atoms by their integration over an
arbitrary chosen part of space. By this method, bonded atoms — the focus of all
chemistry — may be endowed with an accurate physical measure of their changes
in a reaction.

Both types of the energy derivatives are equivalent when calculated within
the same system N = const. or ;4 = const., and they must lead to the same
energy change on disturbing the external potential by a displacement of atoms.

9.4.1 The roadmap linking the CDFT derivatives to the chemical
observables

The whole body of the derivatives up to the third degree has been presented
previously by the authors [36,37]. In Scheme 9.1 only those necessary to for
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e,
E[N,v(r)] E“[N{R}]
/ \

= 5EE[ el nn el
p(r)= Sv(r) F, =F,-F'=-V,E
a)(r r') = LE‘EI el
T Su()sv(r) 1 Vy F, =-V,-V,E
[Jowe,mae=F! |
| |
V,pr)= _,[ o(r,r') g, (r)dr Co =V, F:I =V;-F,

\ /
[VB [ p) &, (1) = [V, p(0)- &, (1) =—[ [ (1) &, (1) &, (¢ )elrdr' = C}

SCHEME 9.1 Relations between derivatives of the electronic energy in the local representation
E€ [N; v(r)] and the corresponding total energy derivatives in the nuclear coordinate representation
E®! [N; {R}] for N = const. The H-F force on a nucleus is by definition F4 = —V 4 E and Fil =

—V7E ¢l stands for the electronic part thereof; Cpy is an element of the DF Connectivity Matrix,
N is the number of electrons.

the energy expansion (2nd degree) have been collected, as they expose the most
important feature of the vector analysis thereof, demonstrated in earlier work:
the divergences of the nuclear repulsion forces vanish, i.e., V g - F'}' = 0 [46]. As
a consequence, the second derivatives of energy in E [N; {R}] representation are
equivalent to their counterparts calculated for the electronic energy in the CDFT
closed system. Vector derivatives (divergencies) that form the DF connectivity
matrix of the system C are all available directly by proper summation of the
elements of Cartesian Hessian [46,77].

9.4.2 The DF connectivity matrix C vs the Cartesian Hessian K

The two matrices may be presented in the atomic resolution as

Can Cga Cca .. K., Kz, IZ(CA
Cc= Cap Cpp .. and K= Kis Kgp
= Cac -

(9.14)
The Cartesian Hessian matrix (K, 3n x 3n) of the second energy derivatives
may be viewed as an (n X n) block matrix where each k _block 3x3)isa
pair-interaction matrix as exposed in the work by Seminario [83]. The full set
of matrix elements between atoms A and B can be written symbolically as the
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dyad of V p and F 4 vectors (see Appendix 9.A.3),
k BE[VB®FA]- (9.15)

Here F4 is total force including the n—n interactions, Eq. (9.15) may be sepa-
rated into electronic and internuclear contributions, k k., kez + k”"
The elements of the DF connectivity matrix C are by deﬁmtlon the traces of

kel blocks (cf. Scheme 9.1), or the dot- products of Vp and Fy4 vectors. It has

been demonstrated by the authors in their preceding work, that the AB blocks
of the nuclear interactions are traceless since V g - F'{' = 0 [46]. Hence,

— . _ el el
Cap=Vgp FA—T}’EA —TVEAB—VB Fy (9.16)

9.4.3 The energy expansion

Expansion of the energy E€/[N, v(r)] in a Taylor series has been recently re-
minded by Boisdenghien et al. in their study on the properties of the linear
response function. When N = const. (closed system), the expansion reads [16]

AEel=/p(r)Av(r)dr+%//w(r, ) Av(r) Av(r)drdy + ... (9.17)

Here AE® = AE — AV™ stands for the electronic energy, exclusively. In the
absence of external fields other than generated by the nuclei in the system, the
change in the external potential Av(r) may be expressed with the displacements
of the nuclei vectors (ARy), by introducing the external electric field strength
vectors € 4 (r) for each nucleus (cf. Appendix 9.A.1). Eq. (9.17) is transformed
to a form with atoms clearly identified, namely

AE = ZARA / p(r)e 4 (r)dr+

+§//a)(r,r/)XA:XB:{ARA-eA(r)}{ARB-eg(r/)}drdr/
(9.18)

The integral within the first term represents the electronic part of the H-F force
(F¢, cf. Scheme 9.1). The combination of two dot-products of vectors (sec-
ond term in Eq. (9.18)) may be regrouped. It is alternatively represented by the
dyadic product [e4(r) ® € 5(r')] (the 3 x 3 matrix, cf. Appendix 9.A.3), or else,
the order within the dot-products may be altered [84,85]:

{ARA -4} {ARp - e5(r)} =
= ARy - [ea(r) ® ep(r)]- ARp = {AR4 - ARp} {e4(r) - ep(r)}
(9.19)
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where AR4 and ARp are displacement vectors of atoms in the Cartesian sys-
tem of coordinates. Considering Eq. (9.19) (last term), the double integral in
Eq. (9.18) is transformed into the form containing an integral identical with the
CDFT expressions for an element of the connectivity matrix Ca4 or Cp4, as
given in Scheme 9.1, respectively,

AE“ =—Y"ARs-F{+

A
1
* EXA:;(ARA ' ARB>//w(r, r') {ea(r) - ep(r)} drar’.
(9.20)

Eq. (9.20) represents the general expression for the electronic energy contribu-
tion associated with a virtual displacement of atoms in a system,; the electronic
force Fif does not vanish for a stationary state of a system,

1
AEE’z—ZARA~FZI—EZZ(ARA~ARB)CAB. (9.21)
A A B

An alternative formulation of this result may also be reproduced. The dyadic
product (the second term in Eq. (9.19)) can be introduced into Eq. (9.18) (second
term), yielding

AE" =—%" ARy -F{+
A

1
DI { [ [oarilame eB(r’)]drdr’} ARy,

(9.22)

By substituting EEIB = [ [, r)[ear) ® ep(r)]drdr, the classical result
written with the C‘::lrtesian Hessian is obtained, namely

1
AEflz_ZARA-Fi{+EZZ<ARA.§B-ARB>. (9.23)
A A B

Egs. (9.21) and (9.23) are identical, since the result for the product in parenthe-
ses (Eq. (9.23)) is

AR, K - ARp=(AR4-ARp)Tr (12(213). (9.24)

Given Eq. (9.16) and Trk’X’B = 0, the final result may be formulated for the
overall energy of the system as

1
AE=—) ARy -Fs—23 3 (ARs ARp)Cap. (9.25)
A A B
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The second term in the Taylor expansion for the energy may be formulated
by means of the connectivity matrix (Eq. (9.25)), rather than by the Cartesian
Hessian; it represents the vibrational energy AE,;,. For a system in equilib-
rium, the first term vanishes. The proof has been accomplished: the connectivity
matrix represents a complete measure for the vibrational energy contribution
to the energy of a system. By using the basic properties of the connectivity
matrix »_ 4Cap =0 and Cpp = Cpa, this vibrational energy term has been
transformed to a workable general expression (cf. Appendix 9.A.4)

1
AEup=—5 ) (ARs-ARp)Cap =

A B
1 2 1 2
=452 ) IARA—Rp)PCap=753 » CaglARupl*.
A B<A A B<A

(9.26)

Hence, the nondiagonal elements of the connectivity matrix indeed serve as the
force constants for all A—B contacts in a system.

9.4.4 Atomic fragility modes

The result presented in the previous section points to the very important role of
the DF Connectivity Matrix in describing the vibrational energy of molecules
in atomic resolution. Diagonalization of the Cartesian Hessian is subject of the
classical analysis and leads to the 3n — 6 (or 3n — 5) vibrational normal modes
for a molecule (Ay) and their frequencies [86,87]. Analogous procedure for the
C matrix yields (n — 1) modes, hereby referred to as the atomic fragility modes

(AY) [77], QT = A. While the normal modes (1) represent the collection of
independent oscillators (harmonic), the atomic modes (A,) describe somewhat
condensed picture thereof. The DF Connectivity Matrix elements are cumulative
force constants [46] (or effective, according to King [47]), referring to an atom
trapped in the potential energy well, which is induced by the electron density
function of the entire system.

The relation between these two solutions, the normal modes (Ay) and the
atomic modes (A ), is indirect, but has been implied by the frequency sum rule
described by King and Wilson et al. [47,50]. In the framework of this present
work, the sum rule reads

3n—6 n—1
> ha=)_ A (9.27)
o %

where Ay and A, stand for the eigenvalues of matrices K and C, respectively.
Eq. (9.27) exposes the difference between the two methods for analysis of a
vibrating molecule, i.e., the normal modes and the atomic modes. Unlike the
normal modes, the eigenvalues A, describe the electronic energy exclusively.
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The number of the atomic modes (n — 1) is less than that of the normal modes
(3n — 6), indicating that the atomic modes are physically realized by groups
of normal modes. However, the eigenvalues for normal modes cannot be di-
rectly attributed to eigenvalues of specific atomic modes, as the nuclear energy
of a system (V") may not be divided between atoms. The crucial information
on the reacting system is provided by the eigenvectors L associated with the

eigenvalues (A,) of the DF Connectivity Matrix g [77]. The eigenvectors are

. . . . 2
normalized, hence the squares of atomic coefficient for a given mode, (Ll‘j‘) s
provide direct information on the involvement of atoms (A) in atomic modes

(v). Also (LZ)2 reflects the role of individual atom in a particular, physically
realistic vibration pattern affecting the electronic energy. This opens a novel ob-
servation point potentially valuable for a chemical reaction, namely observation
of the variable role of displacement of individual atoms in disturbing the elec-
tronic energy of a whole system. The atomic eigenvalues have still the meaning
of force constants, hence a collection of eigenvalues and eigenvectors calculated
on a IRC reaction trajectory provide comprehensive information on an evolution
of bonding interactions in a system and on the role of individual atoms therein.

9.5 Application to a chemical reaction

Formal analysis presented in Section 9.4 hints to the potential of the method,
when it is applied to a chemical reaction. The energy formulas of Egs. (9.25)
and (9.26) remain valid for any fixed configuration of the nuclei, if the stationary
electron density function is found by solving the Schrédinger equation (under
Born—Oppenheimer approximation). Should that be a state of equilibrium (RS,
TS, PS), the forces will vanish on every atom, (Fi‘l + F’}‘”) = 0. Otherwise, the
first term in Eq. (9.25) is nonzero; nevertheless, the second term preserves its
meaning of the sum of virtual contribution to the vibrational energy from each
particular contact in the system.

The IRC method provides the firm ground for this matter: the stationary
electron state is granted at each step of the reaction path. The reaction progress
parameter &, as defined in the IRC formalism, offers a tool for extending the
mathematical analysis. Every state on a reaction path represents a well-defined
configuration of atoms: at each step forward along the path defined by the
increase of the reaction progress by A, the position of an atom varies by
ARy = (dRy/d§) A§. Moreover, the R4 (§) dependence is limited to the linear
function, according to the computational rigor on IRC [74,75]. Hence, each step
forward on the reaction path may be used to diagnose the vibrational properties
of the given configuration of atoms.

The observation of gradual changes of the force constants in a system on the
subsequent reaction steps on the way from reagents (RS) to products (PS) con-
tains valuable information on the mechanism of this reaction, especially as the
present analysis is focused on the electronic energy contributions to bonds. In
our earlier work we have studied the evolution of H-F forces along IRC path and



Reaction fragility method Chapter | 9 275

their the projection onto the reaction coordinate [88]. The second energy deriva-
tive over the reaction progress (the reaction force constant) has been advocated
by Politzer et al. [89,90]. Both derivatives have also been formulated in the
atomic resolution for use for the chemical purposes [75]. The formal analysis in
Section 9.4.3 has provided the new perspective to this approach, by proving the
electronic character of the second derivative over displacement of atoms, when
calculated on the ground of the vector analysis, and also, by demonstrating the
additive character of contributions from all bond/contacts to the vibrational en-
ergy of a system.

9.5.1 The third energy derivative over reaction progress

The third derivative of energy over reaction progress (an anharmonicity param-
eter) has not yet been analyzed as such. Our novel approach allows for a natural
description of the anharmonic effects with the use of the Reaction Fragility con-
cept ag = d(TrC)/d& [52] that has served as a leverage for the idea a of the
Reaction Fragility Spectra [46].

Egs. (9.25) and (9.26) allow identifying all three energy derivatives in the
energy expansion with respect to £ and discovering their informative potential
for a chemical reaction. The Taylor expansion for the energy function E (&)
reads

_ AE() = FeAE + %Ks A2 4 %ASA§3. 9.28)

The physical meaning of all three terms in this energy expression has been well
founded: the first represents the reaction force work [91], the second stands
for the vibrational energy (harmonic), and the last anharmonic term describes
directly the actual change of the bond structure — the chemical change. The
derivatives in Eq. (9.28) can be expressed in the atomic resolution, using the
result presented in Eq. (9.25) for the total energy. By using the natural substi-
tution ARy = (dR4/d&) A&, the reaction force in Eq. (9.28) is equivalent to
the formerly presented result for projection of the HF forces onto the reaction
coordinate [75],

F :—Z(FQ’F : %). (9.29)

A

The second derivative (K¢ constant) in atomic resolution will be extracted from
the second term the expansion in Eq. (9.25). Thanks to the applied vector for-
mulation, it has been proved to be of an electronic nature only, which makes it
superior for the chemical analysis over the conventional reaction force constant.
Moreover, K¢ can be related to the DF Connectivity Matrix elements C 4 g rather
that to the Cartesian Hessian elements by using the result for the second term
proved with Eq. (9.26) (the transformation of the product of vectors dR4/d&
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and dRp/dé§ is holding; see Appendix 9.A.4):

dRap |?
dt

Ke==3 3" DanCan where Dan=|
A B<A

(9.30)

For the sake of brevity, the distance factor for bonds has been introduced as
Dap. The global third energy derivative over the reaction progress will also
be sought for in the vector formulation. The reaction anharmonicity Az =
dKg/d& must be calculated when observing the local linearity condition on
IRC, d’ AR 4 /dE? = 0. Hence,

=N Y o = Dasal®. 3D

A B<A A B<A

Notably, this result for the reaction anharmonicity A¢ in Eq. (9.31) is entirely lo-
calized in bonds/contacts between atoms. The new quantity, a?B = —dCup/dE§,
has been introduced in previous works from this laboratory under the name
“bond fragility” [72]. The relation of the bond fragility to the physical mea-
sures of anharmonicity can be demonstrated (Eq. (9.32)) with the atomic anhar-
monicity vectors introduced and discussed in our previous work [37], namely
azap=VzCap=dCap/dRz, as

atoms

dC dR
agAB = AP Z azap - —=. (9.32)

The variation of the energy parameter K¢ along a reaction path reflects the ongo-
ing modification of internal structure of bonds in a reacting system — a chemical
change induced by a reaction, the A¢ derivative reports the intensity of this ef-
fect. There are, however, two sources of change in K¢ and A¢ with A &, clearly
distinguishable in Eqgs. (9.30) and (9.31): first, the simple shift of atoms result-
ing in the modification of their distance dR 4 p/d&, and second, the modification
of the electronic nature of the system sensed by the DF Connectivity Matrix el-
ements C4p. The latter effect is an essence of the A parameter representing
a sum of the bond fragilities ag‘B weighted by the corresponding change in

the distance factor between atoms, Dap = |dRsp/d& 2. The role of DF Con-
nectivity Matrix has been fully exposed because the variations of its el