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ABSTRACT. The theoretic foundations of the novel method for the comprehensive studies on 

the mechanism of the evolution of the electronic structure in a chemical reaction have been 

presented. Our method provides quantification for both the sequence of bond forming and 

breaking and the degree of bond (order) modifications along the chemical reaction path. The 

new Density Functional Connectivity Matrix has been introduced: its elements are the 

divergences of the Hellmann–Feynman forces for atoms in a molecule over the atomic 

displacements. They have been proved to describe to what extend atoms in a molecule are 

actually connected with chemical bonds or bonding interactions. The matrix provided 

foundation for the Reaction Fragility Method. 

(i) With the use of the Conceptual Density Functional Theory we have completed the road 

map to characterization of the properties of atoms and bonds in a molecule. We have derived 

the new gradient theorem, essential for demonstrating the direct link between divergences of 

the Hellman-Feynman forces on the nuclei and the linear response function of electron 

density. 

(ii) The vibrational energy of a system has been decomposed into the atomic fragility 

modes through diagonalization of the DF Connectivity Matrix, by analogy with the formalism 

of the normal modes. We present numerical results for the evolution of the atomic fragility 

modes on the reaction path in the test reaction of the internal proton transfer in H2N-CHO 

molecule. The visualization of the involvement of bonds and/or contacts between individual 

atoms on consecutive steps of the reaction has been demonstrated. 

(iii) The bond fragilities introduced in previous works clearly deliver description of the 

anharmonic effects for all bonds/contacts in the reacting system. Here we demonstrate how 

the bond fragilities provide a unique measure of the anharmonic effects in the system, 

reflecting the response of the vibrational electronic energy to changes in the distances 

between atoms. The additive contributions from all bonds are combined to the unique global 

anharmonicity parameter, the third electron energy derivative over the reaction progress. This 

quantity can be used as a measure of the global changes in a molecule, when they are 

triggered step by step along a specific reaction path. 
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1. Introduction: the search for atoms  

Formal structure of the Conceptual Density Functional Theory (CDFT) has expanded over 

the years to the well-organized, quasi-thermodynamic system concentrated on exploration of 

the energy functional [ ( )]E  r  in quantification of properties of molecules. The global 

quantities characterizing atomic and molecular entities are:1,2,3,4 chemical potential 

 /
v

E N =   , hardness 
2 2/

v
E N  =    , softness S=1/. The local quantities describe a 

response of the density function to the change in N or : Fukui function  ( ) ( ) /
v

f N=  r r  

and local softness  ( ) ( ) /
v

s  =  r r . Contracting these local quantities to atoms bonded in 

molecules has long been recognized as an important challenge on the way to CDFT 

applications in practical chemistry. However, the results have been limited to various types of 

approximations,5,6,7,8,9,10,11,12 far from expectations of chemistry where the reality of bonded 

atoms has been a cornerstone for consideration of reactivity. The difficulty has long been 

recognized: neither the QTAIM method,13 nor the Hirschfeld partition had produced more 

than a ‘noumenon’ - “an object of purely intellectual intuition (…) subject to arbitrary (but 

disciplined) personal choice when specificity is desired.” 14 

For practical reasons, the closed system representation (canonical ensemble) has been 

dominating in the analyses:  ; ( )E N  r . The linear response function (LRF) combing the 

electron density ( ) r  and the external potential ( ) r  in a closed system containing N 

electrons, has been most naturally introduced as a functional derivative playing the key role in 

the chemistry oriented analyses:1 ( ) ( )( , ') / '
N

   =  r r r r . Properties of this kernel 

function have been subject of many studies concentrated on bonded atoms by observation of 

the polarization of the electron density ( ) r  in a system upon disturbing the local external 

potential ( )' r . Geerlings et al. has demonstrated how the fundamental notion of LRF has 

been tentatively explored in analysis of local properties of atoms-in-molecules.15 

Boisdenghien et al. has presented an electron energy expansion in the Taylor series; attractive 

two- and one-dimensional projections of the LRF as ( ,0) r  for atoms have resulted.16,17  

Another approach to LRF by the above authors was aimed via polarizability of atoms and 

molecules that has been reasonably reproduced by using computable results for ( , ') r r .18 

The formal link between the LRF and the polarizability tensor has been first proposed by Vela 

and Gazques.19 It was dwelled upon by other authors20,21 and the polarization justified Fukui 
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indices have been developed on this ground by Komorowski et al.22 The LRF condensed to 

atoms has been proposed by Sablon et al. by an arbitrary integration of the ( , ') r r  kernel; 

the result has been explored to quantify inductive and resonance effects.23 

The new perspective for discerning atoms in the CDFT formalism has been opened by 

exploration of the Hellman-Feynman (H-F) forces on the nuclei. In the absence of external 

fields other that from atomic nuclei, the disturbance in the external potential ( ) r  is 

uniquely defined by shifts of the nuclei in a system  iR . Consequently, alternative 

representations for the closed and open systems have been introduced  ;E N  R  and 

 ;E   R .24,25,26,27 Energy derivatives over displacement of nuclei 
iR  in these 

representations have fundamental physical meaning of force, force constant, and 

anharmonicities associated with displacement of atomic nuclei. They all describe directly 

properties of atoms bound within the system and characterize atomic contacts. Since forces 

are entirely determined by the electron density function, there is no need to artificially 

condensing any local quantities for determination properties of individual atoms. 

The original concept of the Hellman-Feynman force uniquely identifies atomic nuclei in 

molecules28,29: el nn

A A A AE= − = +F F F . Early consideration of the origin of forces and 

consequences thereof have been provided by Nakatsuji.30,31 The link between the H-F forces 

and the CDFT formalism has been first shown by Cohen et al.,32 the authors also introduced 

the new derivative of chemical potential under the name nuclear reactivity 

( )
 

/A A AN=   = −
R

Φ F  . The concept has been explored by other authors, however, initial 

hopes for directly indexing reactivity of bonded atoms by 
AΦ  were in vain.33,34,26 In the latest 

work by Laplaza et al. the coupling between the orbital energies and the shifts of the nuclei 

has been analyzed.35 

The nuclear stiffness has been introduced as the next corresponding derivative of global 

hardness by Ordon et al. as an extension of this idea: ( )
 

2 2/A A AN=   = 
R

G F .25 The 

whole body of energy derivatives in the representation of atomic coordinates, both in the 

closed (N=const.) and open (µ=const.) systems has been formulated, their renormalization 

has also been demonstrated.36,37 The vital result of that effort focused directly on atoms 

identified by the H-F forces was the discovery of vibrational softening of molecules38,39,40  

with perspectives for applications to explosive reactions.41 The linear response function has 
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been essential for bridging the energy derivatives in the basic CDFT formalism and their 

counterparts built on  ;E N  R  function.42 

The significant contribution to the theory on the role of atoms in chemical reactivity has 

been elaborated by Nalewajski43,44 with the goal to: “understand the subtle interplay between 

the geometrical and/or electronic degrees of freedom of both isolated molecules and the 

reactive systems”.45 The coupling has been described in the atomic discretization at the CSA 

level, originally proposed by Nalewajski.43 This sophisticated approach has been founded on 

the electron preceding perspective (“chemical thinking”) and had of-necessity combined the 

basic parameters from two non-equivalent sources: the exact positions of nuclei and exact 

forces thereon have been used parallelly to the populations of the point-atoms, reasonably 

calculated (albeit arbitrarily defined) from the equalization of the chemical potential in the 

system. The lasting value of this analysis was in formulating the geometrical minimum energy 

coordinate (MEC) concept for tracing the changes in electronic structure of a reacting system. 

 

2. Exposing the electron energy by the force constants analysis 

Recently we have exposed the fresh practical power of the application of the vector 

analysis to the derivatives of the H-F force along a defined reaction path (IRC), meeting the 

MEC condition. We have found that the divergence of H-F force contains solely the electronic 

energy of a system, since nuclear-nuclear contributions vanish by the Laplace law.46 This 

valuable property has been first mentioned by King et al. as the frequency sum rule. 47,48,49 

The authors attempted to characterize bond properties with the use force divergencies calling 

them effective force constants and noticed that the electronic energy contributes exclusively 

to the divergence of the H-F force. Decius and Wilson also used that sum rule, however, their 

work has been limited to the isotopic effects.50 The even earlier deep analysis by Salem 

contained the clear formulation for the derivatives of the H-F forces.51  

We have established that the H-F force divergences calculated along the reaction path, 

represent a potential source of quantitative information on evolution of the electron density 

within a reacting system.52 This is definitely an approach from atomic and bonding 

perspective. The H-F force divergences for any system of n atoms form the novel DF 

Connectivity Matrix C , that describes electronic properties of the system in the long desired 

atomic resolution. This DF Connectivity Matrix has different meaning than the old, arbitrary 

concept of the Atomic Connectivity Matrix (ACM) first proposed by Spialter53,54 and 
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developed by his followers within the graph theory;55,56,57,58,59 the idea has been applied even 

to an analysis of crystal structures,60 with appropriate modifications as to reflect the bond 

valences.61  

Our DF Connectivity Matrix delivers theoretical description of the atomic valences and 

bond orders providing readily available and exact numerical data.62 We obtain the elements of 

the DF Connectivity Matrix elements (CAA, CAB – cumulative force constants) in the harmonic 

approximation by appropriate summation of the elements of the Cartesian Hessian. The 

harmonic oscillator’s regime seems to be limiting, however when CAA and CAB are calculated 

for a sequence of stationary states along the IRC, their step-by-step variations unveil the 

process beyond the harmonic condition: modification of atomic bonds (and valences) as a 

result of the ongoing chemical reaction. This straightforward method to picture the 

mechanism of the chemical reaction leads to the analogous results63 as observations of the 

reaction path curvatures provided with the advanced normal modes considerations by Kraka 

et al., (adiabatic internal vibrational mode AIMO64), within their unified reaction valley 

approach (URVA).65,66,67,68,69,70,71 

Recently we have investigated in depth the derivatives of the elements of the DF 

connectivity matrix over reaction progress (dCAA/d, dCAB/d). The working term Reaction 

Fragility (RF) has been adopted for those derivatives.52 They were found to reproduce very 

accurately the evolution of common atomic properties along a reaction path: the evolution of 

the atomic valence and the bond orders, respectively.63,72 The atomic fragilities also provide 

proper measure for the contribution of an atom to the global reaction force73 /F dE d=  . 

Since the H-F forces themselves, as well as their divergences, are readily available in 

standard quantum chemical computations, the method can be routinely applied for monitoring 

and imaging changes in reacting systems, traced along a reaction path. For this task we have 

applied the IRC formalism.74,75,76 The spectrum-like diagrams of changes along a reaction 

have also been demonstrated for the potential energy of bonded atoms, naturally apportioned 

as fractions of the potential energy of a system.77 The method provides description of atoms 

and their bonds with no need for the common arbitrary definitions assigning atomic volumes 

or populations.78,79 

We devote this present article to revealing links between the reaction fragility formalism 

based on the DF Connectivity Matrix, and the theoretical framework of conceptual DFT 

where the density linear response function plays central role. Novel properties of the electron 
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density function that can be deduced form the DF Connectivity Matrix formalism have been 

presented first (Section 3). The link between the CDFT derivatives and their counterparts in 

the reaction fragility analysis is outlined. The energy expansion has been presented in the 

representation  ;E N  R ; it is followed by an interpretation of the role of DF Connectivity 

Matrix in tracing the vibrational energy attributed to individual atoms. The atomic fragility 

modes, an alternative to the normal mode analysis, have finally been presented (Section 4). 

Application to a chemical reaction within the IRC formalism follows in Section 5. The 

numerical analysis of the proton migration in formamide molecule has been presented for the 

sake of illustration the power of the atomic fragility modes in monitoring the role of atoms in 

a reaction (Section 6). 

 

3. The electron density gradient in the DF connectivity matrix formalism 

Recently we have derived direct relations between the force divergences essential for the 

Reaction Fragility concept and the electron density gradient.77 We consider here a molecule as 

the system of atoms in an electronically stationary state, with no external field, other than 

generated by the nuclei in the system. The divergences of H-F forces in a molecule built with 

n atoms form the n x n DF connectivity matrix. As we have recently demonstrated, the 

elements of the connectivity matrix are exactly:77,80 

 ( ) ( ) ( )AA A A A AC d=  =  +  F r r r rε       (1) 

( )  ( )B A B A A A B AC d  =   =  F r r r        (2) 

For the specific notation and derivations, see the Appendix, p. 9.1 and p. 9.2, respectively. 

The sum rule has also been established 0BA BA

B A

C C= =  , hence AA BA

B A

C C


= − .46 

 

3.1. From the DF connectivity matrix to the electron density gradient. 

By combining the above sum rule with eq. 1 and eq. 2, a novel condition for the stationary 

electron density has been noticed: 

( ) ( ) ( ) 0A B

B

d 
 
  + = 
 

ε r r r r       (3) 

This condition is general and no symmetry restrictions have been invoked. Since the solution 

for ( ) r  in eq. 3 must be unique,81 and eq. 3 holds separately for every atom (A) in a system, 

the natural property of the electron density in an external field from all nuclei emerges: 
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 ( ) ( )B

B

  = −r r         (4) 

Eq. 4 represents potentially important property of the electron density in a system of atoms. 

For a single atom, it is reduced to the sound identity: ( ) ( )B  = −r r . Eq. 4 may be 

transformed into the more specific form, as the density gradient above ( )B r  has only been 

conceived here as a derivative with no other condition specified. In the closed (canonical) 

system, it is conveniently expressed by the electronic response function:46 

  
( ) ( ')

( ) ' ( , ') ( ') '
( ')

B BN
BN

d
d d

d

 
= = − 

 
 

 
 



r r
r r r r ε r r

r R
    (5) 

Hence, eq. 4 leads to a new relation between the density gradient and the linear response 

function, never exposed hitherto, to the best knowledge of authors: 

( ) ( , ') ( ') 'd = r r r ε r r        (6) 

Here ( ') ( ')BB
=ε r ε r  is the electric field from all external sources (nuclei only). This 

gradient theorem (eq. 6), provides the novel and much needed interconnection between the 

electric field and the density gradients, as discussed by Bader on numerous examples.13 

The proof of eq. 6 is straightforward within the CDFT framework, it provides a 

rationale to the conclusion from eq. 4. By definition, the linear response function in a closed 

system is:  ( , ') ( ) / ( ')
N

v  =r r r r . Hence: 

( ) ( ) ( ')
( , ') ( ') ' ( ') ' ' ( )

( ') ( ') '
N N

dv
d v d d

v v d

 
 

 

   
=  = =   

   
  

r r r
r r ε r r r r r r

r r r
   (7) 

 

3.2. Equivalence of the open and closed systems 

The density gradient ( ) r  must not depend on the way it has been calculated. Hence, an 

alternative for eq. 5 must be checked in the grand canonical ensemble, appropriate for an open 

system with the softness kernel  ( , ') ( ) / ( ')s v= −r r r r


  : 

  
( ) ( ')

( ) ' ( , ') ( ') '
( ')

B B

B

d
d s d

d

 
= = 

 
 



 




r r
r r r r ε r r

r R
    (8) 

This is analogous to eq. 5, however  ( )B N
 r  and  ( )B 

 r  are not identical, as can be 

demonstrated using the well-founded and exact Berkowitz-Parr relation,82 between the 

response function ( , ') r r  and the softness kernel ( , ')s r r : 

 ( , ') ( , ') ( ) ( ')s Sf f= − + r r r r r r       (9) 
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By using this in eq. 5 and applying eq. 8 the difference between gradients calculated in two 

alternative systems is exposed: 

    ( ) ( ) ( )B B BN
s


 = −r r r Φ        (10) 

( ) ( , ') 's s d= r r r r  is local softness and 
BΦ  stands for the nuclear reactivity vector. Its 

connection to the Fukui function is well founded (eq. 11):25,26 

 
( )

( ') ( ') ' B
B B

v r

f d
N

 
= =  

 


F
r ε r r Φ       (11) 

Eq. 6 for the density gradient ( ) r  is alternatively formulated in an open system as: 

( ) ( , ') ( ') 's d = −r r r ε r r        (12) 

By subtracting expressions in both systems (eq. 6 and eq. 12) then using eq. 9, it is 

straightforward to show, that both representations for the density gradient are equivalent. The 

difference between both vanishes, as expected: 

 ( ) ( ') ( ') ' ( ) ( ') ( ') ' ( ) 0B B

B B

s f d s f d s= = =  r r ε r r r r ε r r r Φ    (13) 

0 B

B

=Φ  since the sum of all forces acting on the nuclei vanishes: 0B

B

=F .46 

 

4. The energy expansion in  ; ( )E N  r  and  ;E N  R  representations 

Two sets of energy derivatives have been collected for the use in the electronic energy 

expansion: the local functional derivatives over external potential / ( ')v  r  typical in the 

CDFT formalism, and the corresponding vector derivatives over atomic positions: 

/B B  R . The relations between these two types of derivatives have been presented first, 

and their much different nature has been emphasized. Derivatives in the  ;E N  R  

representation are observables characterizing well defined atoms and their links in a closed 

system. Direct relations between these physical derivatives and local derivatives represent an 

alternative to condensation of the local derivatives to atoms by their integration over an 

arbitrary chosen part of space. By this method, bonded atoms - the focus of all chemistry, may 

be endowed with an accurate physical measure of their changes in a reaction. 

Both types of the energy derivatives are equivalent when calculated within the same 

system N=const. or =const. and they must lead to the same energy change on disturbing the 

external potential by a displacement of atoms. 
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4.1. The road map linking the CDFT derivatives to the chemical observables 

The whole body of the derivatives up to the third degree has been presented previously by the 

authors.36,37 In the Scheme II only the ones necessary to for the energy expansion (2nd degree) 

have been collected, as they expose the most important feature of the vector analysis thereof, 

demonstrated in earlier work: the divergences of the nuclear repulsion forces vanish: 

0nn

B A =F .46 As a consequence, the second derivatives of energy in  ;E N  R  

representation are equivalent to their counterparts calculated for the electronic energy in the 

CDFT closed system. Vector derivatives that form the DF connectivity matrix of the system - 

C  are all available directly by proper summation of the elements of Cartesian Hessian.46,77 

 

 

Scheme I 

Relations between derivatives of the electronic energy in the local representation  ; ( )elE N  r  and the 

corresponding total energy derivatives in the nuclear coordinate representation  ;elE N  R  at N=const.  

The H-F force on a nucleus is by definition 
A AE −F   and  

el el

A AE= −F   stands for the electronic part 

thereof. CBA is an element of the DF Connectivity Matrix, N is the number of electrons. 
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4.2. The DF connectivity matrix C  vs the Cartesian Hessian K  

The two matrices may be presented in the atomic resolution: 

...

...

...

...

AA BA CA

AB BB

AC

C C C

C C

C

 
 
 =
 
 
 

C  and 

...

...

...

...

AA BA CA

AB BB

AC

 
 
 

=  
 
  

k k k

k k
K

k
  (14) 

The Cartesian Hessian matrix ( K , 3n x 3n) of the second energy derivatives may be viewed 

as (n x n) block matrix where each 
AB

k   block (3 x 3) is a pair interaction matrix as exposed in 

the work by Seminario.83 The full set of matrix elements between atoms A and B and can be 

written symbolically as the dyad of  and  B AF  vectors (see Appendix, p. 9.4): 

B AAB
   k F         (15) 

Here 
AF  is total force including the n-n interactions, eq. 15 may be separated into electronic 

and internuclear contributions: el nn

AB AB AB
= +k k k . 

The elements of the DF connectivity matrix C  are by definition the traces of el

AB
k  

blocks (cf. Scheme I), or the dot products of  and  B AF  vectors. It has been demonstrated by 

the authors in their preceding work, that the AB blocks of the nuclear interactions are traceless 

since 0nn

B A =F 46  Hence: 

el el

AB B A B AAB AB
C Tr Tr=  = = = F k k F       (16) 

 

4.3. The energy expansion 

Expansion of the energy [ , ( )]elE N v r  in a Taylor series has been recently reminded by 

Boisdenghien et al. in their study on the properties of the linear response function. When 

N=const. (closed system), the expansion reads:16 

1
( ) ( ) ( , ') ( ) ( ') ' ...

2

elE v d v v d d =  +   +   r r r r r r r r r    (17) 

Here 
el nnE E V =  −  stands for the electronic energy, exclusively. In the absence of 

external fields other than generated by the nuclei in the system, the change in the external 

potential ( )v r  may be expressed with the displacements of the nuclei vectors ( )AR , by 
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introducing the external electric field strength vectors ( )A rε  for each nucleus (cf. the 

Appendix p. 9.1). Eq. 17 is transformed to a form with atoms clearly identified: 

  

( ) ( )

1
( , ') ( ) ( ') '

2

el

A A

A

A A B B

A B

E d

d d

 = −   +

+    

 







R r r r

r r R r R r r r

ε

ε ε
   (18) 

The integral within the first term represents the electronic part of the H-F force ( el

AF  cf. 

Scheme I). The combination of two dot products of vectors (second term in eq. 18) may be 

regrouped. It is alternatively represented by the dyadic product  ( ) ( ')A Br rε ε  (the 3x3 

matrix, cf. Appendix, p. 9.4), or else, the order within the dot products may be altered.84,85 

  

    

( ) ( ')

( ) ( ') ( ) ( ')

A A B B

A A B B A B A B

    =

=    =   

R r R r

R r r R R R r r

ε ε

ε ε ε ε
  (19) 

AR  and 
BR  are displacement vectors of atoms in the Cartesian system of coordinates . 

Considering eq. 19 (last term), the double integral in eq. 18 is transformed to the form 

containing an integral identical with the CDFT expressions for an element of the connectivity 

matrix CAA and CBA, as given in Scheme I, respectively. 

( )  
1

( , ') ( ) ( ') '
2

el el

A A A B A B

A A B

E d d = −   +     R F R R r r r r r rε ε  (20) 

Eq. 20 represents the general expression for the electronic energy contribution associated with 

a virtual displacement of atoms in a system; the electronic force 
el

AF  does not vanish for a 

stationary state of a system. 

( )
1

2

el el

A A A B AB

A A B

E C = −   −   R F R R      (21) 

An alternative formulation of this result may also be reproduced. The dyadic product (the 

second term in eq. 19) can be introduced into eq. 18 (second term). 

  1
( , ') ( ) ( ') '

2

el el

A A A A B B

A A B

E d d = −   +     R F R r r r r r r Rε ε  (22) 

By substituting  ( , ') ( ) ( ') '
el

A BAB
d d=  k r r r r r rε ε  the classical result written with the 

Cartesian Hessian is obtained: 
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( )
1

2

elel el

A A A BAB
A A B

E = −   +    R F R k R      (23) 

Eq. 21 and eq. 23 are identical, since the result for the product in parentheses (eq. 23) is: 

( ) ( )el el

A B A BAB AB
Tr   =  R k R R R k       (24) 

Given eq. 16 and 0
nn

AB
Tr =k , the final result may be formulated for the overall energy of the 

system: 

( )
1

2
A A A B AB

A A B

E C = −   −   R F R R      (25) 

The second term in the Taylor expansion for the energy may be formulated by means of the 

connectivity matrix (eq. 25), rather than by the Cartesian Hessian; it represents the vibrational 

energy vibE . For a system in equilibrium the first term vanishes. The proof has been 

accomplished: the connectivity matrix represents complete measure for the vibrational energy 

contribution to the energy of a system. By using the basic properties of the connectivity 

matrix 0 and  AB AB BA

A

C C C= = , this vibrational energy term has been transformed to a 

workable general expression (cf. the Appendix p. 9.5): 

( )
2 21 1 1

( )
2 2 2

vib A B AB A B AB AB AB

A B A B A A B A

E C C C
 

 = −   = +  − =   R R R R R  (26) 

Hence, the nondiagonal elements of the connectivity matrix indeed serve as the electronic 

force constants for all A-B contacts in a system. 

 

4.4. Atomic fragility modes 

The result presented in the previous section points to the very important role of the DF 

Connectivity Matrix in describing the vibrational energy of molecules in atomic resolution. 

Diagonalization of the Cartesian Hessian is subject of the classical analysis and leads to the 

3n-6 (or 3n-5) vibrational normal modes for a molecule () and their frequencies.86,87 

Analogous procedure for C  matrix yields (n-1) modes, hereby referred to as the atomic 

fragility modes (
):77 T

=LCL Λ . While the normal modes () represent the collection of 

independent oscillators (harmonic), the atomic modes () describe somewhat condensed 
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picture thereof. The DF Connectivity Matrix elements are cumulative force constants46 (or 

effective, according to King47), referring to an atom trapped in the potential energy well, 

which is induced by the electron density function of the entire system. 

The relation between these two solutions, the normal modes () and the atomic modes 

(), is indirect, but has been implied by the frequency sum rule described by King, Wilson et 

al.50,47 In the framework of this present work the sum rule reads: 

3 6 1n n− −

=   

 

          (27) 

  and  stand for the eigenvalues of matrices K  and C , respectively. Eq. 27 exposes the 

difference between the two methods for analysis of a vibrating molecule: the normal modes 

and the atomic modes. Unlike the normal modes, the eigenvalues  describe the electronic 

energy exclusively. The number of the atomic modes (n-1) is less than the normal modes (3n-

6), indicating that the atomic modes are physically realized by groups of normal modes. 

However, the eigenvalues for normal modes cannot be directly attributed to eigenvalues of 

specific atomic modes, as the nuclear energy of a system (Vnn) may not be divided between 

atoms. The crucial information on the reacting system is provided by the eigenvectors L  

associated with the eigenvalues () of the DF Connectivity Matrix C .77 The eignevectors are 

normalized, hence the squares of atomic coefficient for a given mode, ( )
2

AL  provide direct 

information on the involvement of atoms (A) in atomic modes (). ( )
2

AL  reflects the role of 

individual atom in a particular, physically realistic vibration pattern affecting the electronic 

energy. This opens a novel observation point potentially valuable for a chemical reaction: 

observation of the variable role of displacement of individual atoms in disturbing the 

electronic energy of a whole system. The atomic eigenvalues have still the meaning of force 

constants, hence a collection of eigenvalues and eigenvectors calculated on a IRC reaction 

trajectory provide comprehensive information on an evolution of bonding interactions in a 

system and on the role of individual atoms therein. 

 

5. Application to a chemical reaction 

Formal analysis presented in section 4 hints to the potential of the method, when it is 

applied to a chemical reaction. The energy formulas of the eq. 25 and 26 remain valid for any 

fixed configuration of the nuclei, if the stationary electron density function is found by 

solving the Schrödinger equation (under Born Oppenheimer approximation). Should that be a 
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state of equilibrium (RS, TS, PS), the forces will vanish on every atom ( ) 0el nn

A A+ =F F . 

Otherwise, the first term in eq. 25 is nonzero, nevertheless, the second term preserves its 

meaning of the virtual contribution to the vibrational energy from each particular contact in 

the system. 

The IRC method provides the firm ground for this matter: the stationary electron state is 

granted at each step of the reaction path. The reaction progress parameter  as defined in the 

IRC formalism offers a tool for extending the mathematical analysis. Every state on a reaction 

path represents a well-defined configuration of atoms: at each step forward along the path 

defined by the increase of the reaction progress by Δ, the position of an atom varies by 

( )/A Ad d =  R R . Moreover, the ( )A R  dependence is limited to the linear function, 

according to the computational rigor on IRC.74,75 Hence, each step forward on the reaction 

path may be used to diagnosing the vibrational properties of the given configuration of atoms. 

Observation of gradual changes of the force constants in a system on the subsequent 

reaction steps on the way from reagents (RS) to products (PS) contains valuable information 

on the mechanism of this reaction, especially as the present analysis is focused on the 

electronic energy contributions to bonds. In our earlier work we have studied the evolution of 

H-F forces along IRC path and their the projection onto the reaction coordinate.88 The second 

energy derivative over the reaction progress (the reaction force constant) has been advocated 

by Politzer et al.89,90 Both derivatives have also been formulated in the atomic resolution for 

use in chemical purposes.75 The formal analysis in p. 4.3 has provided the new perspective to 

this approach, by proving the electronic character of the second derivative over displacement 

of atoms, when calculated on the ground of the vector analysis, and also, by demonstrating the 

additive character of contributions from all bond/contacts to the electronic energy of a system. 

 

5.1  The third energy derivative over reaction progress 

The third derivative of energy over reaction progress (an anharmonicity parameter), has 

not yet been analyzed as such. Our novel approach allows to the more natural description of 

the anharmonic effects with the use of the Reaction Fragility concept ( ) /a d Tr d= C 52 that 

has served as a leverage for the idea a of the Reaction Fragility Spectra.46 

Eq. 25 and eq. 26 allow for identifying all three energy derivatives in the energy 

expansion with ξ and to discover their informative potential for a chemical reaction. The 

Taylor expansion for the energy function E() reads: 
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2 31 1
2 6

( )E F K A− =  +  +             (28) 

The physical meaning of all three terms in this energy expression has been well founded: the 

first one represents the reaction force work,91 the second stands for the vibrational energy 

(harmonic), and the last anharmonic term describes directly the actual change of the bond 

structure – the chemical change. The derivatives in eq. 28 can be expressed in the atomic 

resolution, using the result presented in eq. 25 for the total energy. By using the natural 

substitution ( )/A Ad d =  R R , the reaction force in eq. 28 is equivalent to the formerly 

presented result for projection of the HF forces onto the reaction coordinate:75 

HF A
A

A

d
F

d

 
= −  

 




R
F         (29) 

The second derivative (K constant) in atomic resolution will be extracted from the second 

term the expansion in eq. 25. Thanks to the applied vector formulation, it has been proved to 

be of an electronic nature only, which makes it superior for the chemical analysis over the 

conventional reaction force constant. K can be related to the DF Connectivity Matrix 

elements CAB rather that to the Cartesian Hessian elements by using the result for the second 

term proved with eq. 26 (the transformation of the product of vectors /Ad dR  and /Bd dR

is holding, Appendix p. 9.4): 

2

   where   AB
AB AB AB

A B A

d
K D C D

d

= − =


R
     (30) 

For the sake of brevity, the distance factor for bonds has been introduced as DAB. The global 

third energy derivative over the reaction progress will also be sought for in the vector 

formulation. The reaction anharmonicity /A dK d=    must be calculated when observing 

the local linearity condition on IRC, 2 2/ 0Ad d =R . Hence: 

ABAB
AB AB

A B A A B A

dK dC
A D D a

d d 

= = − = 


 
 

     (31) 

Notably, this result for the reaction anharmonicity A
 in eq. 31, is entirely localized in 

bonds/contacts between atoms. The new quantity, /AB

ABa dC d= −  , has been introduced in 

previous works from this laboratory under the name “bond fragility”.72 Relation of the bond 

fragility to the physical measures of anharmonicity can be demonstrated (eq. 32), with the 

atomic anharmonicity vectors introduced and discussed in our previous work37 

/Z AB Z AB AB ZC dC d = Ra : 
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atoms
AB AB Z

Z AB

Z

dC d
a

d d


 
= − = − 

R
a        (32) 

Variation of the energy parameter K along a reaction path reflects the ongoing modification 

of internal structure of bonds in a reacting system – a chemical change induced by a reaction, 

the A derivative reports the intensity of this effect. There are, however, two sources of 

change in K and A with ∆, clearly distinguishable in eq. 30 and 31: first - the simple shift of 

atoms resulting in the modification of their distance /ABd dR  and second - the modification 

of the electronic nature of the system sensed by the DF Connectivity Matrix elements CAB. 

The latter effect is an essence of the A parameter representing a sum of the bond fragilities 

ABa  weighted by the corresponding change in the distance factor between atoms, 

2
/AB ABD d d= R . The role of DF Connectivity Matrix has been fully exposed, because the 

variations of its elements described by the bond fragilities ABa  have now been proved to 

indeed reflect the real chemical changes in a system. 

 

5.2  Relation to the local modes (adiabatic internal modes) 

An anticipated, indirect relation between anharmonicity phenomenon and a chemical reaction 

has also been present in the unified reaction valley approach (URVA) by Kraka and 

collaborators.92 Their description of the chemical reaction mechanism is derived from the 

evolution of the normal modes (independent oscillators) along the IRC reaction path by the 

transformation to the diagonal force constant matrix K . Introduction of the adiabatic 

curvature coefficients tentatively assigned to bonds, as developed by these authors, allows for 

replacing the need of discussion of anharmonicity. Each step along the reaction path is 

described by the set of harmonic oscillators with different force constant at each step.93,64 One 

distinguished mode follows the reaction path (at 𝜉 = 0 it is a transition state mode), the rest 

3N-7 modes are perpendicular to the reaction path and to each other. These normal modes 

undergo variation along the IRC path; the nonadiabatic curvature coefficients provide 

information on which mode drives the reaction and the Coriolis coefficients show which 

modes tend to exchange energy with each other. The authors have presented an ingenious 

approach to localization of the normal modes into a predefined molecular fragment: “the 

fragment motion is considered as a motion being obtained after relaxing all parts of the 

vibrating molecule but the fragment under consideration.”71 The term local modes has been 

adopted for these adiabatic internal coordinate modes. The proof has been presented that the 



P. Ordon and L. Komorowski: Reaction Fragility Method 

18 

local stretching force constant for an AB entity reflects the intrinsic strength of the 

bond/interaction between atoms A and B.71  The local stretching force constants have been 

claimed to represent the “universal measure of the intrinsic strength of a chemical bond based 

on vibrational spectroscopy71”; the proof is based on the Morse model. 

The Reaction Fragility (RF) method, as documented in this present work, has  common 

root with the local mode methodology by Kraka et al.: that is the Hessian matrix calculated 

for the consecutive steps along IRC. The firm theoretical background supports the RF 

method: the complete neglect of the internuclear interactions is possible by the Laplace law, 

and the DF Connectivity Matrix provides the characteristics of any system of interacting 

atoms, including the specific collection of electronic stationary states along an IRC. By the 

CDFT interpretation for the elements of the DF Connectivity Matrix (Scheme I), they have 

been endowed with the exact, universal and unconditional relation to the electron density via 

the linear response function  ( , ') ( ) / ( ')
N

v=  r r r r . They provide a definite measure of 

the electronic strength of all contacts between atoms in their natural environment in a 

molecule. Moreover, since the bond breaking and forming is primarily based on the 

redistribution of the electron density, this is immediately seen with the Reaction Fragility 

method, by observation of the derivatives of the corresponding DF Connectivity Matrix 

elements over reaction progress along a reaction path. This result could have been 

approximated by the original URVA method for a specified molecular fragment only. 

The important practical advantage of the Reaction Fragility method rests on simplicity of 

its numerical procedure: computation of the full Hessian matrix is the condition both 

necessary and sufficient for its implementation. Whenever a procedure exists for obtaining 

branches of the IRC path, then also the Hessian for each branch will be obtained 

straightforwardly, and the Reaction Fragility monitoring is possible for each branch of the 

bifurcation. The Reaction Fragility method also is not vulnerable to the trajectories of the 

second order transition states with two negative frequencies. For the Reaction Fragility 

method the reaction path is just a trajectory connecting points of variable molecular geometry 

and yet, the principal advantage of the method comes from the fact that it is exact. 

Discovering a relation between the local modes based on vibrational spectroscopy (URVA), 

and the atomic modes (RFM), represents a challenging task for further studies. 
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6. Example: the internal proton transfer in formamide 

Following the formal analysis presented in Section 4 and 5, the practical consequences of 

the diagonalization of the DF connectivity matrix have been analyzed. The atomic modes 

have been tested as a tool for tracing a role of atoms in evolution of a system on a reaction 

path for the proton transfer reaction in formamide. Also, the contributions of individual 

bonds/contacts to the vibrational energy of and to anharmonicity parameter of this reacting 

system have been tested. 

 

6.1. Computational details 

Numerical results for the elements of the DF connectivity matrix have been obtained from 

calculation of the IRC energy profile by the standard procedure at the MP2 level using the 6-

311++G(3df,3pd) basis set and the Gaussian 09 code.94 The internal proton transfer reaction 

has been selected as an example, the preliminary data for the diagonalization of the 

connectivity matrix have already been reported for this molecule (in RS, TS and PS only).77,95 

H2N-CHO molecule has been considered in the planar configuration, as established in the 

former works.95 The TS structure has been identified by means of the QST2 algorithm and 

verified with the frequency calculation for the normal vibrational modes. The reaction 

progress parameter () has been calculated in the mass-weighted coordinates at 105 points 

over reaction path covering the range (-2.90 <  < +2.50). The Cartesian Hessian has been 

calculated for each single point on the trajectory using the geometry of the structures on the 

IRC; the elements of the DF connectivity matrix have been calculated by proper summation 

of Cartesian Hessian elements:96 CAB=kAx,Bx+kAy,By+kAz,Bz. 

The DF connectivity matrices C  calculated for points on IRC, have been diagonalized 

separately by the numerical NumPy (v.1.17.2) method available online.97,98,99 To reassure the 

correct identification of eigenvectors with eigenvalues (v), calculated separately at every 

point on the reaction path, an independent procedure has been executed with the algorithmic 

method, for three characteristic points: RS, TS and PS.100 This provided a test for proper 

identification of atoms in normalized eigenvectors resulting from the numerical procedure - 

2

AL  coefficients corresponding to the eigenvalues v. The individual functions 

2( )  and   ( )vAL 
 have been sorted out separately from the corresponding collections of 

numerical data (  vs   and 2  vs L  ), as smooth (differentiable) curves, accordingly. The 

eigenvalues for the DF connectivity matrix along IRC have been shown in. Fig.1. All 

numerical data have been presented in the atomic units: CAB [Hartree/(Bohr)2],  [(amu)1/2Bohr]. 
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Fig. 1 

Eigenvalues of the DF connectivity matrix  

[v in Hartree/(Bohr)2] variable on IRC ()  

for the internal proton transfer reaction in formamide 

H2N-CHO. 

 

 
 

Fig. 2 The squares of the normalized eigenvector coefficients variable along the reaction path for the internal 

proton transfer reaction in H2N-CHO molecule. 

A) The squares of eigenvector coefficients for the mobile H4 atom in all five atomic modes. 

B) The squares of eigenvector coefficients for all atoms in the lowest 1 atomic mode  

 

6.2. Characteristics of the atomic fragility modes 

In order to visualize the normalized eigenvectors, two types of diagrams may be used, by 

collecting them by atoms or by the modes. Both types of diagrams have been depicted in Fig. 

2A for the most active atom (H4) and the lowest atomic fragility mode (1). Eigenvectors for 

H4 and atoms within the same atomic fragility mode (lowest energy) have been shown in Fig. 

2B. The normalized eigenvector coefficients for other atomic modes and for other atoms in 

the system have been collected in Fig. 3 and Fig. 4, respectively. 
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Fig. 3  The squares of the normalized eigenvector coefficients of atoms in the eigenvectors for atomic modes 2-5 

in formamide, along the IRC for the internal proton transfer reaction. 
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Fig. 4  

The squares of the normalized eigenvector 

coefficients of atoms in H2N-CHO molecule for all 

atomic modes (1-5) along the IRC for the internal 

proton transfer reaction. The uniform style of lines 

for the atomic modes has been indicated on the 

diagram C2. For H4, consult Fig. 2A. 
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6.3. Vibrational energy distribution in bonds 

Eq. 26 allows for attribution of the vibrational energy to bonds and contacts in the reacting 

system. This has been envisaged by calculating the K parameter (eq. 28 and 30) traced along 

the IRC reaction path and the principal results have been presented in Fig. 5. The vibrational 

energy contribution has been dominated by the bonds undergoing changes N1—H4 and O3—

H4, (Fig. 5A). However, the method has been sufficiently sensitive as to discover even the 

minute variations in other bonds and contacts playing a role in this reaction (Fig. 5B). 

 

  

Fig. 5  Major (A) and minor (B) contributions from bonds and/or contacts to the vibrational energy measured by 

the bond components to K constant (eq. 30, a.u.), along the reaction path for the internal proton transfer 

in H2N-CHO. For the sake of clarity, the scale of the ordinate axis in Fig. 5 B has been expanded (10 x).  

 

While no results for this same reaction have been available in order to judge the efficiency of 

the present method, the general feature of the characteristics in Fig. 5 may be compared to the 

curvature diagrams reported by Kraka & Cremer for the similar proton transfer reaction: 

S⎯C(H)OH → HSC(H)⎯O.92 The scalar curvature characteristics for bonds reported in this 

work are dominated by the O-H bond cleavage at the reaction onset (-1), and by the S-H 

bond formation peak in the reaction decay (1). The analogy to the shape, location and role 

of the N1-H4 and O3-H4 curves in Fig. 5A is striking, and calls for formal analysis of the 

relevance between the two methodologies for monitoring reaction progress. 

 

6.4. Anharmonic parameter A  and major contributions from bonds/contacts. 

The anharmonicity parameter for the reaction has been calculated according to eq. 31. Also, 

the individual contributions from all bonds and contacts have been calculated; the major 

contributions have been collected in Fig. 6. 
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Fig. 6 

Contributions from bonds and contacts to the global 

anharmonicity parameter (A , eq. 31, a.u.) along the 

reaction path for the internal proton transfer in H2N-

CHO. 

 

The next highest contribution from a bond (H4-H6) was by one order of magnitude 

smaller than the lowest contribution envisaged in Fig. 6 (H5-H4 contact). The character of 

curves for the two bonds undergoing the change in the proton transfer reaction (N1-H4 and 

H4-O3) is entirely defined by the corresponding bond fragility spectra (  vs ABa  ), as reported 

in previous work.95 The relatively high contributions to overall anharmonicity parameter A 

from the two non-bonding contacts in the system (H4-C2 and H4-H5) is an interesting novel 

discovery in this reaction. 

 

6.5. Reaction fragilities for atoms and bonds. 

The principal atomic and bond fragilities for this system, defined as /A

AAa dC d=   and 

/AB

ABa dC d= −  , respectively, have already been presented for the reaction center, i.e. for 

the proton exchanging atoms.95 It is now helpful to recall the fragilities for all atoms in the 

system (6) as well as for all their possible contacts (15), as they play crucial role in calculation 

of the anharmonicity parameters for the reaction A and its contributions. Since the atomic 

fragilities represent a sum of fragilities calculated for all bonds/contacts of each atom 

A AB

B

a a=  , it is now possible to detect the role of even minute disturbances induced to 

bonds by the reaction. The diagrams in Fig. 7-11 have been segregated by atoms, hence the 

curves for the bond fragilities of some atoms have been repeated. The strong interactions for 

bonds have been separated from the weak ones for contacts and the ordinate axis has been 

adjusted separately, with the scaling factor marked on each diagram. 
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Fig. 7  Calculated reaction fragilities (in a.u.) for atoms N1 (A) and O3 (B) and for their bonds/contacts along the 

reaction path for the internal proton transfer in H2N-CHO. The bond fragilities for weak interactions of 

remaining atoms with N1 and O3 are shown on the diagrams for the respective partners in Fig. 8-11. 

 

 

 

 

 

 

 

 

Fig. 8 

Calculated reaction fragility (in a.u.) for H4 atom and 

its bonds/contacts along the reaction path for the 

internal proton transfer in H2N-CHO. Note the 

contraction of the scale on the ordinate axis by 1:2, 

with respect to the basic scale in Fig. 7 for N1 and O3 

atoms. 

 

  

Fig. 9     Calculated reaction fragility (in a.u.) for C2 atom and its bonds/contacts along the reaction path for the 

internal proton transfer in H2N-CHO. Two group of atoms have been separately shown in the diagram 

for the sake of clarity as A and B. Note the expansion of the scale on the ordinate axis by 2:1, with 

respect to the basic scale in Fig. 7 for N1 and O3 atoms. 
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Fig. 10     Calculated reaction fragility (in a.u.) for H5 atom and its bonds/contacts along the reaction path for the 

internal proton transfer in H2N-CHO. Two group of atoms have been separately shown in the diagram 

for the sake of clarity as A and B. Note the expansion of the scale on the ordinate axis by 10:1, with 

respect to the basic scale in Fig. 7 for N1 and O3 atoms. 

 

  

Fig. 11     Calculated reaction fragility (in a.u.) for H6 atom and its bonds/contacts along the reaction path for the 

internal proton transfer in H2N-CHO. Two group of atoms have been separately shown in the diagram 

for the sake of clarity as A and B. Note the expansion of the scale on the ordinate axis by 10:1, with 

respect to the basic scale in Fig. 7 for N1 and O3 atoms. 

 

7. Discussion: quantitative monitoring of a chemical reaction 

Two types of observations have been demonstrated for the specific model reaction of 

internal proton transfer in formamide, selected as an instructive example for assessing the 

method of computational monitoring atoms and bonds in reactions. (i) The novel atomic 

fragility modes representing the potential tool for evaluation the consequences of the 

structural modification brought about by the reaction. (ii) The direct quantitative information 

on bond evolution provided by the fragility spectra with the anharmonicity parameters 

calculated on the reaction path. 
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7.1. The role of atoms for the atomic fragility modes. 

The concept of the atomic vibrational modes opens a novel, original observation point for 

chemical reactions. It is clear in Fig. 1, that all atomic modes are subject to change with 

regrouping of atoms. The lowest and presumably dominating atomic mode (1) is affected by 

the reorganization in the narrow range near TS (-0.8<<0.8), in a typical, symmetric fashion 

with a minimum at TS. On the contrary, the high energy mode (5) is only slightly affected 

by the reaction, its gradual change covers the broadest range of the process (-1.5<<2.5). The 

impact of the reaction on the intermediate energy modes (2, 3, 4) is significant, though 

rather unexpected. The energy of the (2) mode is considerably higher than (1) mode near 

the reaction onset (Fig. 1). The energy of (2) rapidly decays by ca. 30% at the point where 

the changes in (1) begin. The reverse phenomenon is observed for (3): its energy rises 

sharply by ca. 60% at the endpoint of the minimum at (1). The evolution of (2) and (3) 

modes clearly indicates their active role in the reaction. Modification of the high energy mode 

(4) is remarkably large and broad, covering the range (-1.5<<1.5), suggesting a minor 

change of rather strong bonds. Quite interestingly, the TS point seems to be significant mark 

for the (1) mode only. 

The above observation can be elucidated only by monitoring the participating atoms for 

each mode, the valuable result of this present work. Despite small number of atoms 

participating in the chosen reaction, the distinction of atoms into clearly separated groups is 

possible, with regard to their participation in the reaction events, as understood with chemical 

intuition: (i) the mobile atom H4, (ii) the affected atoms N1, H5, O3, and (iii) the spectator 

atoms C2, H6. 

The squares of the normalized eigenvector coefficients for atoms provide the much 

wanted information as they disclose the effect of switching atoms between the modes, as the 

reaction proceeds. In the lowest energy mode (1) the mobile atom H4 has been found 

dominating in the vicinity of the TS point (Fig. 2A and 2B) as expected. Its role in the 

structure of this mode in the initial and final stages of the process is different. Near the RS 

state, the H6 atom is a dominant of this mode; its role vanishes entirely near TS (Fig. 2B). The 

H5 atom participation in (1) mode, initially nearly as high as the one of H4, falls down to 

zero at TS, then rises sharply, to meet the level of H4 at the end of the process, with equal 

share in this mode (ca. 40%). The heavy atoms appear to rest merely as spectators to this 

atomic mode. 
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The (2) atomic mode is also characterized mainly by the participation of protons, (Fig. 

3, L2(2) ), with the significant, but small, maximum for the N1, O3 atoms, and to some 

extent also C2 atom around TS. At the initial stage, H4 and H5 atoms contribute equally to 

(2) mode, in the similar manner as they do in (1), but there is no share of H6 here. There is 

striking alteration of the structure of this mode in its way to PS: at the end of the process the 

H6 atom will dominate (70%). The initial symmetry in the contributions from H4 and H5 

atoms and unique position of H6 atom in two lowest atomic modes is in harmony with the 

chemical character of the formamide molecule. 

In the initial stage (RS), the (3) mode is close the (2), but its structure is considerably 

different (Fig. 3, L2(3)). This mode involves initially the -CHO group of the molecule with 

only H6 and O3 atoms playing a role, until past the TS state (ca. 1). At this final point, 

contributions from O3 and H6 atoms are reduced to by 60 % and they are replaced by H4, N1 

and C2 atoms in roughly equal shares. The effect of the reaction is fully exposed by this 

change: the initially isolated -CHO group has been transformed to the coupled ⎯N=CHOH 

entity. 

 The structure of the (4) atomic mode observed in Fig. 3, L2(4) well explains the 

remarkable change in the reaction and the broad range of bond modification along the 

reaction path. At the initial stage (RS) the mode characterizes the N-C-O skeleton, with N1 

atom strongly dominating. This will not change substantially until towards the end of the 

reaction (ca. 1) where the O3 atom takes the lead, the contribution from C2 vanishes (C2 

atom switches to 3 mode, see above) and H4 atom joins the band: -N-C-OH. (4) is the 

highest atomic mode where the reaction events have been marked: they are hardly noticed in 

the (5) atomic structure in Fig. 3, L2(5). 

 The variations of the atomic contributions to the eigenvectors calculated for the atomic 

modes as described above reveal their role in the process even better, when they are grouped 

by atoms, rather than by the modes. This has been shown in Fig. 4 for the skeleton atoms, in 

addition to Fig. 2A drawn for the moving H4 atom separately. 

The panorama of atomic participation in the eigenvectors presented in Fig. 4 provides 

very instructive picture of the reaction mechanism. First, it becomes evident that the hydrogen 

atoms (H5, H6) serve as sensors for the actual changes introduced along the reaction path, 

even if they do not play directly a role in this process. Drifting H4 away from the N1 nitrogen 

is dramatically sensed by H5 and H6 atoms; docking H4 at O3 is manifested sharply by the 
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distant H6 atom. Two heavy atoms (N1, C2) do not show dramatic alternation in their 

involvement in any of the atomic modes, despite the evident changes in their bond structure: 

H2N-C(H)=O→HN=C(H)-OH. 

The N1 and C2 atoms participate with the considerable contribution only in the highest 

energy modes (4, 5); the significant role of O3 atom for (3) mode marks clearly its active 

role for the reaction. The role of H5 and H6 atoms in the lowest atomic modes (1, 2) could 

hardly be noticed by other observation methods. 

 

7.2. Contributions from bonds/contacts to the vibrational energy 

Quantitative parameters K and A calculated for the reaction path open a chance for new 

characterization of contacts between atoms in a system undergoing a reaction, by testing the 

stepwise evolution of their contributions to the vibrational energy along the way. Unlike the 

atomic and bond parameters describing inherent properties of a stationary system (e.g. CAA, 

CAB), the bond contributions to K and A report the energy required to make a step on the 

“optimal” path from reactants to products. 

Contributions to the vibrational energy demonstrated in Fig. 5A indicate, that at the initial 

RS state, most of the energy change is localized in the NH2 group, and it is distributed in 

nearly equal parts between N1-H4 and H5-N1 bonds, with a small admixture from N1-C2 

bond (Fig. 5B). The situation is only partially reversed in the final PS state: the energy change 

is localized largely in H4-O3 bond, however, the share of N1-H5 bond is recovered, after 

falling to zero near TS. The N1-C2 skeleton bond follows this trend, reaching at PS the level 

considerably higher than it has been at RS (Fig. 5B), as its formal bond order is increased. 

The non-bonding contact between C2 atom and the moving proton H4 must somehow play a 

role in the process (Fig. 5A), as it seems to introduce an element of stiffness to the system, 

considerably decreasing the vibration energy around TS. Otherwise, the skeleton atoms play 

little role in the process, with O3-C2 bond barely sensing the events (Fig. 5B), despite evident 

decrease of its formal bond order; the impact of the process on the C2-H6 bond is larger. 

Among the noticeable variation in Fig. 5, the H4-H5 contact deserves mentioning: it is 

loosened at the reaction onset, and it is recovered, somewhat unexpectedly, in the TS region 

as if another link between two atoms were created even before PS. 

The meaning of the reaction anharmonicity curves A  and the bond contributions thereto 

in Fig. 6 is less intricate than of the force constants in Fig. 5. High values of this parameter are 

convincingly associated with the running process of bond alternation in a system. It may be 
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bond rupture (negative values) or bond creation (positive values). Significant values of the 

bond components reported in Fig. 6 are only few – apparently, the reaction is dominated by 

the N1-H4 bond breaking and O3-H4 bond creation. All noticeable contributions from bonds 

to A involve the links of H4 atom with all but the isolated H6 atom. The role H5-H4 contact, 

though marginal in this process, confirms the role of protons, being potential sensors for the 

electronic process nearby. 

In order to complete the analysis of K and A  derivatives, it is instructive to appraise the 

role of the distance factor 
2

/AB ABD d d= R  in eq. 30 and 31. It contains valuable 

information on the degree and direction of change in bond distances on the subsequent 

reaction steps, even though it is determined with the limitation of the IRC reaction path. The 

characteristic features of this factor have been illustrated by the sample diagrams (Fig. 12). 

The D value tends to be nearly constant in the distinctly separated regions, with the 

borderlines for the central TS region ca. (-1.5<<1.3). DAB for all contacts involving the 

mobile H4 atom distinctly increase in the central region, DAB for other contacts are all 

negligibly small and slightly decreasing around TS; only one, most significant representative 

of this group has been brought to the picture (N1-H5, Fig. 7). 

 

 

 

 

 

 

 

 

 

 

Fig. 12  

The distance factors 
2

/
ABABD d d= R  [a.u.] in eq. 

30 and 31 for the selected bonds variable with the 

internal proton transfer in NH2-CHO. 

 

7.3. Sensitivity of the bond fragility analysis 

The bond fragilities presented in Fig. 7-11 fall into three separate categories. First one 

represent the bonding interactions, considerably altered by the process: H4-N1, H4-O3 (Fig. 7 

and Fig. 8). They show strong maxima/minima in their fragilities that dominate the change in 

the fragility of respective partner atoms and indicate the critical points on the reaction path, 

where the process driving the reaction really occurs. The striking similarity between the 
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anharmonicity diagram for the active bonds (Fig. 6) and their bond fragilities (Fig. 8) proves, 

the leading role of ABa  over DAB factor in eq. 31. 

The second group form the bonds of considerably smaller fragilities (ca. by a factor 1/5), 

but still indicating explicit participation in the electron exchange in the reaction: C2-N1 and 

C2-O3 (Fig. 7). Interesting information can be clearly deduced from Fig. 9A: breaking the 

H4-N1 bond (Fig. 7) is associated with increase of the C2-N1 bond order for a moment, while 

O3-C2 bond suffers a parallel decrease (Fig. 9A). It is rather unexpected that the H4-C2 

nonbonding contact also falls into this category, this contact too is broken at the initial phase 

of the reaction (Fig. 9B) and is restored as soon as the H4-O3 bond is formed (Fig. 8). 

Surprisingly, the H4-C2 bond share in the vibrational energy of the system appears to be 

negative for this bond in the TS region (Fig. 5A). The C2-N1 bond gains more strength near 

the end of the process (Fig. 7A), while C2-O3 bond does not Fig. 7B: the well understood 

chemistry of this process is formidably illustrated by the above diagrams inasmuch as C2-N1 

and C2-O3 bonds are considered. On the other hand, the non-negligible interaction between 

the moving proton H4 and C2 atom is an intriguing discovery of the method. The 

contradictory changes around C2 atom explain the flat curve for the fragility of this atom (Fig. 

9). 

The third group of bond fragility curves incorporate the remaining bonds and contacts in 

the system; they all are clearly described, despite being by an order of magnitude smaller that 

the former ones. The H5-N1 bond (Fig. 10A) and H6-C2 bond (Fig. 9B) belong to this 

category. The former one is clearly undermined by the process in the initial phase (Fig. 10A), 

so is the latter one, but at the end of the process (Fig. 11B). Almost as strong change as these 

two bonds is observed for the H5-H4 contact (Fig. 10B) building up and H5-O3 contacts 

falling dawn (Fig. 10A), despite the shortening the N1-H5 contact clearly observed in D 

factor of that bond (Fig. 12). The seemingly isolated H6 atom strengthens its bond to C2 (Fig. 

11 A), its interactions with other protons in the system are hardly noticeable on its fragility 

diagrams. 

 

7.4. Summary of the indicators for monitoring reactions 

Our theoretical and computational analysis of the chemical reaction delivers understanding its 

fine details. Here we have presented a systematic review of the utility of the novel tools, 

accessible with the computational quantum chemistry methods. With the use of the 

cumulative force constants CAB, the method allows for assessing the bond stability, rather than 
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the bond energy, in some sort of analogy to the standard normal mode analysis. There are two 

important advantages in our reaction fragility approach over the normal modes evolution 

along the reaction path: (i) reaction fragilities are given by the electron energy exclusively and 

(ii) they are focused directly on atoms and bonds, the indispensable objects for chemical 

considerations.  

The eigenvalues and the eigenvectors for the lowest atomic fragility modes for a system 

provide the first indication on the location of the reaction center, and also allow for detection 

the outreach of the process to atoms affected, though distant from a reaction center. Further 

global insight is provided by the global electron energy derivatives K and A. It is interesting 

to note, that in the atomic units, the numerical values of the elements of the DF connectivity 

matrix and their derivatives, cover the orders of magnitude convenient for the facile 

comparison between various systems and reactions. The nature of K and A indicators is, 

however, different from the two another basic global indicators: the trace of the connectivity 

matrix and its derivative known as the reaction fragility,  and ( ) /Tr a d Tr d= C C , 

respectively. These two allow for observation of a system in an electron stationary state, 

whereas the K and A contain an additional information on the reaction path: the DAB factor 

that includes the distance changes on a step. Hence, K and A  characterize a nature of the 

particular step on IRC, rather that the system itself. 

The atomic and bond fragilities are two types of indicators for observation the individual 

atoms, the natural components of any reacting system. As demonstrated on the example (p. 

6.5), they describe convincingly the degree of coupling of an atom in a particular position in a 

molecule, not only by a bond to particular neighboring atom, but through the electronic 

interactions, to the complete network of atoms in the entire system. Together with the squares 

of the normalized atomic coefficients of the eigenvectors they provide most valuable 

information on the role of every atom in the transition process from reactants to products.  

The tools for observation of bonds in a reacting system are complementary to the ones 

developed for atoms. The bond fragilities /AB

ABa dC d= −   describe the variations in the 

bond orders, as the elements CAB have the familiar meaning of the cumulative force constant 

for particular bonds, with their meaning limited to the electron energy. As demonstrated in p. 

6.5 and discusses in p. 7.3 for the internal proton transfer in formamide, the bond fragilities 

are sensitive indicators of the interactions even as weak, as between the two hydrogen atoms 

separated by a chain of 2-3 other atoms. This appears to be more attractive for the chemical 
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discussion of the electron density modification in a reaction, than the calculation of the actual 

force constants for the virtual oscillators (the normal modes). 

The energy analysis presented in this work provides the new tool for observation bonds as 

they are created or modified in reactions. The DAB parameters calculated for bonds might 

serve as detectors of the actual limits for a process on a reaction path: the points of its onset 

and decay. They also clearly point out to the moving atoms in a system discerning them from 

the ones that are merely adapting. 

The bond components to the K value provide possibly the most perspicuous view of the 

changes in a reacting system, by discerning the energy inputs required not only for a bond 

creation or rupture, but also for tiny modifications of any contact between atoms in a system. 

The sequence of the oncoming reaction events is also clearly illustrated by these bond 

components. The components of the associated third derivative of the energy (A ) are 

considerable less sensitive probes for a reaction. They do however, discern between the bond 

breaking and bond formation process, therefore, they may play an essential subsidiary role in 

describing a reaction mechanism. 

 

8. Conclusions and perspectives 

The methodology presented in this work has been built on the computational results 

available in the Cartesian Hessian, the concept is parallel to the one presented by Seminario in 

his FUERZA method.83 This author demonstrated how to derive the internal force constants 

for chosen bonds and angles (with sufficient accuracy), by the procedure beyond the normal 

mode analysis. The goal of this present work is similar, however it is considerably broader, 

more intricate, and reaching deeply into the nature of the interactions between atoms. The 

Cartesian Hessian has once again been explored as reliable source of data with facile 

computational access. By exploring the vector analysis (divergence of force, rather than the 

ordinary derivatives), the Cartesian Hessian (3n x 3n) is contracted to the Density Functional 

connectivity matrix (n x n) whose elements not only describe all mutual interactions between 

atoms nested inside their molecular environment, but also report the electronic energy 

exclusively. 

This effect has been first noted by W. T. King in his early works.47,48,49 The author had 

described the frequency sum rule and understood the electronic energy behind it:47 “the 

effective Cartesian force constants found by this sum rule are independent of the nuclear 

repulsion energy and consequently depend only on the electron distribution in the molecule” 

An additional conclusion deals with the Born-Oppenheimer approximation inherent in his 
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work. “Because the nuclear-repulsion energy, (…) is an additive term in the potential 

function and because it satisfies Laplace's equation, it will vanish in the calculation of  [2E]  

by any method. (…)”48  The far reaching consequences of King’s findings have not been 

explored until in this present work. The existing apparatus of the Conceptual DFT and the 

contemporary computational tools, allowed for the development both of the theory and 

applications of this effect oriented for practical chemistry. 

By defining the DF connectivity matrix and by formulation of the H-F force divergences 

in the language of the Conceptual DFT, an extension has been accomplished for the King’s 

formula presented in the language of physics. Connection between the matrix elements of 

purely electronic nature and the linear response function has been demonstrated.46 The break-

through in the theory has been achieved by exploring the general property of the density 

function, theoretically proved by S. Liu et al.80 (cf. Appendix p. 2). Its application to the DF 

Connectivity Matrix resulted in the uniform formulation of the matrix elements (Scheme I). 

The original gradient theorem equally applicable for open and closed systems (eq. 6 and eq. 

12) has been developed on this ground. With the above findings, the vibrational energy term 

in the energy expansion has been proved to be purely electronic in its nature. 

There are important consequences of the above result, to name a few. The vibrational 

energy can now be expressed as a sum of contributions from bonds and contacts between 

atoms, much in the spirit of chemical discussions of their properties. That resolves the 

problem raised by Seminario,83 and recently discussed by S. Racioppi et al.101 referring the 

methods for the breakdown of interaction energy, an important tool to understand chemical 

bonding. By proving the DFT formulae for the elements of the DF Connectivity Matrix CAA, 

CAB (Scheme I) an a priori quantitative method for description of atoms and bonds has been 

achieved. This finding tends to undermine the assertion once expressed by Parr and 

Nalewajski: “the atom in a molecule cannot be directly observed by experiment, nor can one 

measure enough properties of an atom in a molecule to define it unambiguously.”102 

Properties of an atom may nonetheless be quantified by present reaction fragility method 

focused on interactions of the actual density function with an atomic nuclei. (The similar point 

of view has been a source of the nuclear magnetic resonance method.) We present the energy 

analysis that leads to diagonalization of the energy matrix in atomic resolution; this is 

formally parallel to the Charge Sensitivity Analysis (CSA) by Nalewajski et al.103,104,105 

However, unlike the CSA method where atomic populations have been assigned to atoms 

with a selected arbitrary definition, the electronic energy function in our approach rests 

entirely on the physical and computable quantities: electric field vector and H-F forces. 
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The observation method for variable bond orders and atomic valences on a reaction path is 

the valuable practical application of the DF Connectivity Matrix.52,63,72 We have proved that 

the derivatives of the DF connectivity matrix elements over the reaction progress parameters 

(Reaction Fragilities) serve as fine probes of the electron density evolution upon a reaction. 

This observation is focused directly on the valence region of a reacting molecule, as it has 

been noticed by Salem, that core electron region of the spherical symmetry does not 

contribute to the electronic H-F force acting on a nucleus.51 The energy analysis presented 

hereby provided the justification for the Reaction Fragility Method: the bond fragilities 

represent a measure for the anharmonicity of bonds and contacts in the actual configuration of 

the nuclei at the corresponding stationary state of the electron density. In the chemical 

language, anharmonicity can be translated as the susceptibility of a bond to changing its 

strength, the formidable point of view for a chemist interested in transformations of molecules 

- chemical reactions. 

The theoretical results may also facilitate the deeper understanding of the mechanism of 

the molecular transformation. The first and dominating term in the energy expansion (eq. 25 

and 28) is the reaction force work; the energy required to shift the nuclei to new positions on a 

reaction step. In an actual reaction, this energy is likely to be provided by a collision, resulting 

in a non-equilibrium excited state (vibrational or electronic) and possibly the starting point for 

further process leading to a new state of equilibrium. In order to apply the reaction fragility 

analysis to monitoring the electronic structure of such system on its way, the coupling with 

the direct dynamics simulation might be considered.106 Combining with the reaction fragility 

method would open the direct dynamics simulations to exploration by chemists and would 

allow widening the studies on reactions beyond the IRC regime. 

 

9. Appendix 

Auxiliary notation and proofs for the relations appearing in the text. 

 

9.1. Notation 

Following notation for electron density gradients and the electric fields has been adopted 

throughout the paper: 

( )
( )





 =



r
r

r
         (A.1) 

( )
( ) ( )A A

A

v
v


 = = −



r
r r

R
ε    and  ( ) ( )A AA

v = − r r Rε  (A.2) 
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If not otherwise marked, the following equivalent notations for the density gradient is used: 

 
( )

( ) ( )A A N
A N


 

 
= = 

 

r
r r

R
        (A.3) 

9.2. Proof of eq. 1 

Explicit relations between the divergences of H-F force (eq. 1 and 3) and the electron density 

function have been demonstrated in the previous paper from this laboratory.46  

( ) ( )  4 ( ) ( )AA A A A A A AN N
C Z d  =  = + F R r r r      (A.4) 

( ) ( )  ( )B A A A A B AN N
C d =  = F r r r        (A.5) 

An equation equivalent to A.4 was first reported by King.48 The role of density at the nucleus 

in eq. A.4 has been unclear, since ( ) 0A R .107,108 It may be eliminated, by exploring the 

general result elaborated by Shu-bin Liu et al.80 
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By using this result, eq. A.4 is transformed to a novel form containing the electron density 

function ( ) r  as the only variable parameter; it is now analogous to the expression for the 

non-diagonal elements of the DF connectivity matrix (eq. 1, main text). 

 ( ) ( ) ( )AA A AC d =   + ε r r r r       (A.7) 

Since for a single atom ( ) ( )A  = −r r , eq. A.7 properly explains why CAA=0 for a non-

interacting atom, otherwise CAA>0 as has been demonstrated.  

Another valuable conclusion arises, when properties of the density gradient are recalled. 

The integral in eq. A.7 calculated for an atom can be finite if, and only if: 

 
0

lim ( ) ( ) 0A 
→

 + =
r

r r  since ( )A →ε r  for 0→r . Since the cusp condition requires 

(0)  to be finite, hence an additional general condition emerges for the electron density at a 

nucleus: 
0 0

lim ( ) lim ( )A 
→ →
 = −

r r
r r . This condition appears to be independent on the state of 

bonding of atom, as is the cusp condition itself. 

9.3. The dyadic product of vectors (eq. 15) 
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9.4. Proof of eq. 26 

The essential property of the DF connectivity matrix is used first: 0 AB

A

C = . 

( ) ( ) ( )
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  (A.9) 

Since 
AB BAC C= , the first term in this result becomes: 

( ) ( )2A B AB A B AB

A B A A B A

C C
 

  =   R R R R     (A.10) 

The second term of the result (eq. A.9) may be divided into two equal parts. 
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2 2 2
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Summations over A and B in eq. A.11 are equivalent, hence by substitution eq. A.10 and A.11 

into eq. A.9, and selecting the pairs AB, leads to the final result: 
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