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Theoretical justification has been provided to the method for monitoring the sequence of chemical
bonds’ rearrangement along a reaction path, by tracing the evolution of the diagonal elements of
the Hessian matrix. Relations between the divergences of Hellman-Feynman forces and the energy
and electron density derivatives have been demonstrated. By the proof presented on the grounds of
the conceptual density functional theory formalism, the spectral amplitude observed on the atomic
fragility spectra [L. Komorowski et al., Phys. Chem. Chem. Phys. 18, 32658 (2016)] reflects selectively
the electron density modifications in bonds of an atom. In fact the spectral peaks for an atom reveal
changes of the electron density occurring with bonds creation, breaking, or varying with the reaction
progress. Published by AIP Publishing. https://doi.org/10.1063/1.4995028

I. INTRODUCTION

The theory of electronic reorganization in chemical enti-
ties (atoms and molecules) has been an important goal of the
conceptual density functional theory (cDFT) whose devel-
opment has been parallel to the progress in the computa-
tional techniques for nearly 40 years1,2 since the landmark
papers by Parr et al.3 and Parr and Pearson.4 The comprehen-
sive review of conceptual DFT has been provided by Cher-
mette5 and by Geerlings et al.6,7 Exploring the achievements
of cDFT within the framework of the computational anal-
ysis of a reaction dynamics presents a challenging task in
describing the evolution of the electron density ρ(r) func-
tion when the reaction is in progress.8 Resolution of the
involved interplay between electronic and geometric degrees
of freedom has been subject to the fundamental work by
Nalewajski.9

The key to the cDFT analysis of the electronic struc-
ture properties are the electronic energy derivatives; they
have long been recognized as potential site reactivity indi-
cators.10,11 Parr and Nalewajski first formulated a system-
atic approach to the whole set of derivatives of energy as
an electron-density functional.12–14 They defined Legendre
transforms of the energy functional for the system within
various constraints and derived a variety of Maxwell-type
phenomenological cross relations between functional deriva-
tives. This approach enabled the formulation of sensitivity
analysis, identifying local and global linear-response func-
tions to some external perturbation.15–20 Ayers and Parr21

continued this approach and studied the energy derivatives as

a)Author to whom correspondence should be addressed: piotr.ordon@
upwr.edu.pl

functions of an appropriate set of parameters. Ayers et al.22

have chosen to analyze the energy derivatives up to the third
order, both in canonical and grand canonical ensembles, which
were appropriately renamed for closed and open systems,
respectively. Relationships between many energy derivatives
have been either confirmed or newly demonstrated in this
study. In their analysis, the external potential function υ(r)
served as an independent variable for the energy functional
and was combined with the number of electrons (N) for a
closed system and with the chemical potential of electrons
µ = (∂E/∂N)υ(r) for an open system.

An earlier theoretical work focused on this target was
published by Hunt et al.23–26 The response of the electronic-
charge distribution to an infinitesimal shift in the position of
a nucleus within the molecule had been proved to occur via
the same nonlocal polarizability and hyperpolarizability den-
sities that characterize the perturbation by an external electric
field26 and that have been later reviewed by Ayers et al.22

Hunt et al. presented a rigorous analysis connecting non-
local polarizability and hyperpolarizability to the intensities
of Raman spectra,25 to vibrational force constants, and to
anharmonicities.24 The authors paid particular attention to the
Hellman-Feynman forces exerted on nuclei, i.e., the deriva-
tive of the electronic energy of a system over the position
of a given nucleus.27 They demonstrated that the force on
a nucleus in a molecule depends on the unperturbed charge
distribution of another object approaching it, including the
electronic polarization induced in the host by the perturb-
ing species.28 This analysis provided a hint to the poten-
tial role of the Hellman-Feynman force in the analysis of
the transformation of electronic structure along a reaction
path.

Molecular energy derivatives over nuclear displacement
in a closed system have a very well understood meaning in
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DFT. Their history dates back to the work by Cohen et al.29

who first proposed the nuclear reactivity function (also known
as the nuclear Fukui function) as a derivative of the Hellman-
Feynman force at a nucleus (FA) over the number of electrons:
ΦA = (∂FA/∂N)υ . The concept has been explored by sev-
eral authors.30–38 The detailed review of these studies and the
complete analysis of the energy derivatives over the nuclear
displacement and their relations have been presented in the
papers from this laboratory.39,40 A related study demonstrated
how these derivatives account for the observed anharmonic
effects of molecular vibrations.41

A leitmotiv of the work by Ayers et al. and also by Hunt
et al. was the electron-preceding perspective42 defined as the
electron density that first responds to a perturbation intro-
duced by an external field. In the description of such an effect,
the local derivatives must apply. However, the typical view-
point in computational chemistry is the electron-following
approach as a consequence of the Born–Oppenheimer approx-
imation. The electronic structure is observed as it follows
the displacement of nuclei, either by the IRC model43 or
by the arbitrary collision model along the minimum energy
coordinate (MEC44), possibly combined with statistical theo-
ries.45 The Hohenberg and Kohn DFT theorem is instrumental
here:46 electron density is uniquely adapted to be in equilib-
rium within the external potential of the nuclei at every step of
a chosen trajectory and the existence of the density functional
determines the chemical potential that is equalized throughout
the whole reacting molecule12 and evolving on the reaction
path.47

Computational analysis of the energy derivatives over the
reaction progress (ξ) along the reaction path has been initi-
ated by Toro-Labbe et al.48–50 By defining the reaction force
(Fξ = −dE/dξ), the authors argued that the electronic rear-
rangement may preferentially occur in the central transition
state region.51 Ordon and Tachibana have studied reactivity
index variations along an IRC to establish the most chemi-
cally reactive state.47,52,53 Gonzalez et al. examined stationary
conditions of the electron density along the IRC path both
from reactivity indices point of view and from information
theory.54

The Hellman-Feynman forces along the reaction path
have been focused on in the earlier work by the present
authors.55 Tools have been developed for direct observation
of the role of individual atoms on the system evolution from
reactants to products using the Hellman-Feynman force deriva-
tives. In the next step, the visualization method has been
proposed that shows how individual bonds form, alter, or break
in the course of a reaction.56 When the derivative (d/dξ) of the
trace of the system Hessian has been decomposed to atomic
contributions, the picture was produced describing the vari-
ation of bonding status for an atom at every step along the
reaction coordinate. The resulting two-dimensional diagram
characteristic for a chosen reaction path has been called the
reaction fragility spectrum. It allows for identification of the
points on the reaction path where rapid changes in atomic
contributions occur.

This spectrum may be a valuable result of the electronic
structure calculations for practical chemistry.57,58 In the review
of the chemical dynamics simulations by Hase et al.,59 the

authors demonstrated how the coupled calculations of the elec-
tronic structure and the chemical dynamics have been exten-
sively used to understand the chemical reaction at the atomic
level. The dynamical techniques leading to the pathways and
rates of many reactions discussed in this paper illustrate the
characteristic feature of this type of research: it is focused on
the potential energy surface rather than on the details of the
electron density.60 The present analysis is concentrated on the
density modifications around atoms as they react.

This article is focused on the interpretation of the reac-
tion fragility spectrum by means of the theoretical apparatus
of conceptual DFT. The relevant energy derivatives in the
nuclear-coordinate representation, as related to the functional
derivatives, are presented first, within the new scheme of vector
analysis leading to the cumulative harmonic force constants.
The general relation between these derivatives and the local
ones has been provided. The formal DFT interpretation of the
newly defined cumulative force constants collected in the con-
nectivity matrix has been presented. The derivatives are then
applied to expose the variations of the individual atomic com-
ponents to the trace of the system Hessian. Finally, quantitative
factors that contribute to the intensities of atomic peaks on the
reaction fragility spectrum are demonstrated.

II. ENERGY DERIVATIVES IN THE NUCLEAR
COORDINATE REPRESENTATION

In a closed system, the number of electrons N is well
defined and serves as a global variable. An open system is one
that is free to exchange electrons with some external reservoir
whose chemical potential µ is well defined and is chosen to
be the global variable. It is assumed that all derivatives exist,
which is the case for non-zero temperatures.61 To bring the
analysis closer to real applications, traditional names and defi-
nitions for the derivatives are used. Also, the compact notation
of vector derivatives is introduced.

The appropriate state functions are the electronic energy,
E[N , υ(r)], in a closed system, and the grand potential
Ω[µ, υ(r)] = E− µN , in an open system (exchanging electrons
with a reservoir);10 the open system and closed system repre-
sentations are equivalent as pointed out by Ayers.22 Global
derivatives in both systems are E(N ) = µ (chemical poten-
tial), E(NN) = η (the global hardness), Ω(µ) = �N (number
of electrons), and Ω(µµ) = �S (global softness).

Both systems will be divided into equivalent representa-
tions: external potential [υ(r)] and nuclear coordinates {R}.
Derivatives with respect to the coordinate of a given atom RA

are presented by means of divergence/gradient notation rather
than by commonly used derivatives over each coordinate sep-
arately (supplementary material, p. 1). Since this formulation
is crucial for the final results, all derivatives up to the 3rd order
have been collected for both systems.

Variational derivatives over the external potential υ(r) and
the derivatives over the nuclear displacements for any physical
quantity X (scalar or vector) in these two representations are
bound by the general relation

∇AX =
∫

δX
δυ(r)

∇Aυ(r)dr = −
∫

δX
δυ(r)

εA(r)dr. (1)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-008737
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Vector εA(r) is the electrostatic field from the nucleus A; Eq.
(1) holds for both systems (supplementary material, p. 2) since

[∇Aυ(r)]N = [∇Aυ(r)]µ ≡ −εA(r). (2)

Equation (1) will be used to translate the equations formu-
lated in the external-potential representation (more explored
theoretically) to the nuclear-coordinate representation (more
suitable for experimental connections and computations). First
derivatives of the electronic energy (E) are identical in both
systems,

E(υ) = ρ(r) since dE = µdN +
∫
ρ(r)δυ(r)dr, (3)

Ω
(υ) = ρ(r) since dΩ = dE − µdN + Ndµ

= −Ndµ +
∫
ρ(r)δυ(r)dr. (4)

In the nuclear-coordinate representation, the inter-nuclear
repulsion must not be neglected for the first derivative since

E(R)
tot = Ω

(R)
tot = FA + Fn−n

A . (5)

The Hellmann-Feynman force (FA) acting on a nucleus for
the exact density ρ(r) is obtained by the transformation
[Eqs. (1)–(3)]

FA =

∫
ρ(r)εA(r) = −∇AE = −∇AΩ. (6)

The inter-nuclear term Fn−n
A is represented by

Fn−n
A =

atoms∑
B,A

ZBεA(RB). (7)

Fn−n
A is immaterial to the derivatives of force in the nuclear-

coordinate representation since it is independent of N, and,
also, ∇A · Fn−n

A = 0 and ∇B,A · Fn−n
A = 0 (supplementary

material, p. 3).
The closed system is the basic platform for the analysis

of atoms and molecules characterized by a definite number
of electrons. Derivatives defined here have common names:
Fukui function E(υN) = f (r) and density linear response func-
tion E(υυ) = ω(r, r). In the nuclear-coordinate representation,
the 2nd order derivatives become

E(RN) = −
[
∇Aµ

]
N =

(
∂FA

∂N

)
{R }
≡ ΦA nuclear Fukui function29 (8)

E(RR) = [∇A · FB]N ≡ kAB cumulative harmonic force constant. (9)

The cumulative force constants have been defined as divergences (numbers) representing the trace (invariant) of the matrix, while
the harmonic force constants are typically calculated as elements of a 3 × 3 matrix. The present formulation is sufficient for
further analysis of the electric field derivatives and will be dealt with in detail in Sec. III.

The 3rd order cumulative derivatives in the nuclear coordinate representation in a closed system are

E(RNN) =
[
∇Aη

]
N =

(
∂2FA

∂N2

)
{R }
≡ GA nuclear stiffness vector,33 (10)

E(RRN) =
[
∇A · ∇Bµ

]
N ≡ λAB softening index,35,39,47 (11)

E(RRR) = [∇C · ∇B · FA]N ≡ aCBA cumulative cubic force constant vector.41 (12)

In an open system, the 2nd order derivatives in the external potential representation are local softness Ω(υµ) = s(r) and softness
kernel Ω(υυ) = −s(r, r′). In the nuclear coordinate representation, the derivatives are also related to their counterparts in the
closed system,

Ω
(Rµ) = [∇AN]µ =

(
∂FA

∂µ

)
{R }
= ΦAS the nuclear softness,29,39 (13)

Ω
(RR) = [∇A · FB]µ = k̃AB = kAB − SΦA ·ΦB. (14)

3rd order derivatives in the nuclear coordinate representation
for an open system have been listed separately with their rela-
tion to the corresponding derivatives in the closed system
(supplementary material, p. 4).

The density derivatives in both systems are especially
interesting,39,62

E(υR) =
[
∇Aρ(r)

]
N = −

∫
ω(r, r′)εA(r′)dr′ = $A(r), (15)

Ω
(υR) =

[
∇Aρ(r)

]
µ =

∫
s(r, r′)εA(r′)dr′ = σA(r). (16)

Since the linear response function ω(r,r′) and the softness
kernel s(r,r′) are bound by the Parr-Berkowitz relation63

[Eq. (17)], so are their nuclear coordinate counterparts62

[Eq. (18)]

ω(r, r′) = −s(r, r′) + s(r) f (r′), (17)

$A(r) = −s(r)ΦA + σA(r). (18)

The relation between the cumulative harmonic force con-
stants in both systems [Eq. (14)] becomes the next step of
this formula.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-008737
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-008737
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-008737
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-008737
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In the electron-following perspective, both quantities
(vectors), $A(r), σA(r), represent the local shift of the den-
sity due to the displacement in the position of a nucleus, hence
describing a property quite desirable for reactivity studies. In
the electron-preceding perspective,$A(r) and σA(r) also con-
tain information on how sensitive a chosen nucleus is to the
disturbance of the density at a point at some distance r.

III. THEORETICAL BACKGROUND
A. The connectivity matrix

The divergence ∇A ·FB represents the trace of an ordinary
force-constant matrix for a pair of atoms A, B,

K
AB
=



∂FA,x

∂RB,x

∂FA,x

∂RB,y

∂FA,x

∂RB,z

∂FA,y

∂RB,x

∂FA,y

∂RB,y

∂FA,y

∂RB,z

∂FA,z

∂RB,x

∂FA,z

∂RB,y

∂FA,z

∂RB,z



=



kAB
xx kAB

xy kAB
xz

kAB
yx kAB

yy kAB
yz

kAB
zx kAB

zy kAB
zz



.

(19)

The specific form of this matrix varies with the choice of the
coordinate system; its invariant trace (the divergence) repre-
sents the cumulative derivative ∇A · FB. The whole collection
of K

AB
3 × 3 matrices for all atoms in a system, when unified

in one 3n × 3n matrix, is the system Hessian. The invariants
∇A · FB themselves may be collected in the n × n connectiv-
ity matrix C [Eq. (20)]. To underline their distinction from
the elements of the Hessian, we have called them cumu-
lative derivatives (force constants). Elements of this matrix
are all invariant with respect to the rotations or shifts of the
coordinate system. They characterize the particular atom-in-
molecule (the diagonal elements) and contain some informa-
tion on the nature of the inter-atomic contact (the off-diagonal
elements),

C =



∇A · FA ∇A · FB ... ∇A · FN

∇B · FA ∇B · FB ... ...

... ... ... ...

∇N · FA ... ... ∇N · FN



. (20)

When a system loses one of its atoms (Z) by dissoci-
ation, its corresponding elements in the connectivity matrix
(∇Z · FZ and all ∇B,Z · FZ ) vanish since the energy will no
longer depend on the position of that atom. This emphasizes
that the connectivity matrix provides critical information about
the deformation of a system on a reaction path.

B. Properties of the Hellman-Feynman
force divergences

An important characteristic of the connectivity matrix is
that its elements do not contain the contribution from inter-
nuclear interactions [Eq. (7)]. This makes them a convenient
medium to trace the evolution of the electronic structure
along a chosen minimum-energy reaction coordinate.44 The
Hellman-Feynman force acting on a nucleus is bound to the

electron-density function by the simple relation [Eq. (6)]. The
elements of the connectivity matrix [Eq. (20)] are found by its
appropriate differentiation. By using electrodynamical rela-
tions (supplementary material, p. 2), the results are reduced
to

[∇A · FA]N = 4πZAρ(RA) +
∫
εA(r) ·

[
∇Aρ(r)

]
N dr, (21)

[∇B,A · FA]N =

∫
εA(r) ·

[
∇B,Aρ(r)

]
N dr. (22)

This is equivalent to the formula expressed by Hunt et al. in
the language of the dipole propagator24 and to the ones in
earlier studies by Salem et al.64–66 The results in Eqs. (21) and
(22) may be presented in compact form in the DFT language
[Eq. (15)], and by introducing the Kronecker delta δBA,

[∇A · FB]N = 4πZAρ(RA)δBA

−

∫∫
ω(r, r′)εA(r′) · εB(r)dr′dr. (23)

Equation (23) is exact in reproducing the property of the
newly formulated cumulative second derivatives of the energy
(divergences of forces). It may be transformed with the Parr-
Berkowitz equation [Eq. (17)] to an equivalent form that will
eventually be explored,

[∇A · FB]N = 4πZAρ(RA)δBA − SΦA ·ΦB

+
∫∫

s(r, r′)εA(r′) · εB(r)drdr′. (24)

The divergence formulation of the derivatives leads to exact
formulae for describing properties of the electron density. The
sum of forces over all atoms vanishes [Eq. (5)],∑

B

(
FB + Fn−n

B

)
= 0. (25)

Since the divergence of all nuclear forces is zero (supplemen-
tary material, p. 3), the sum of divergences for ∇A ·

∑
B

FB must

also be zero. Hence, the following property of the connectivity
matrix is proved:

[∇A · FA]N = −

atoms∑
B

[∇A · FB,A]N . (26)

C. Reaction fragility for a reacting atom

The reaction fragility spectrum for an atom in molecule
aA
ξ has been defined as the computed derivative,56

aA
ξ =

d
dξ

(∇A · FA) =
dkAA

dξ
, (27)

where ξ is a parameter that uniquely represents the progress
of the chemical reaction. The most common choice for ξ is
the intrinsic reaction coordinate; however, it is not bound to
any of the existing IRC computational schemes. Any prede-
fined one-dimensional reaction path will do if only the external
potential is uniquely defined by the reaction progress num-
ber ξ.67 The derivative defined by Eq. (27) must be calcu-
lated for an atom exchanging electrons with the rest of the
reacting system treated as a super-molecule. The electronic

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-008737
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-008737
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-008737
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population of an atom (NA) varies with ξ. Thus, a bonded
atom must be treated as an open system at the chemical poten-
tial equalized with the rest of the molecule.44 For every step
along the minimum-energy reaction coordinate, the rest of the
system will be treated as an electron reservoir. The 1st order
differential of kAA can be formally written as

dkAA =

(
∂kAA

∂ξ

)
µ

dξ +

(
∂kAA

∂µ

)
ξ

dµ. (28)

The atomic fragility is then directly related to the reaction
electronic flux (J) parameter once identified by Toro-Labbé
et al.68,69 (dµ/dξ = −J),

aA
ξ =

dkAA

dξ
=

(
∂kAA

∂ξ

)
µ

+

(
∂kAA

∂µ

)
ξ

dµ
dξ

. (29)

The role of the other two derivatives must be elucidated. The
first term can be expanded as(

∂kAA

∂ξ

)
µ

=

atoms∑
B

dRB

dξ
· [∇BkAA]µ. (30)

The derivative [∇BkAA]µ can be reduced to a simple form (for
the proof, see Ref. 41)

[∇BkAA]µ = [∇BkAA]N + SΦBλAA = aBAA + SΦBλAA. (31)

Combining Eqs. (29) and (30) with the use of the definition of
the nuclear reactivity ΦA [Eq. (8)] and reducing the resulting
expansion lead to(

∂kAA

∂ξ

)
µ

=

(
∂kAA

∂ξ

)
N
−

dµ
dξ

SλAA. (32)

For the transformation of the second derivative needed in Eq.
(29), the expression for the derivative λ̃AA [supplementary
material, Eq. S.(16)] will be useful,

λ̃AA = *
,

∂k̃AA

∂µ
+
-ξ
= SλAA + 2S2ΦA ·GA + γS3Φ2

A. (33)

Hence, using Eq. (14),(
∂kAA

∂µ

)
ξ

= SλAA + 2S2ΦA ·GA + γS3Φ2
A +

(
∂

∂µ
SΦ2

A

)
ξ

. (34)

The formal expression for the atomic fragility [Eq. (29)]
becomes

aA
ξ =

(
∂kAA

∂ξ

)
N

+
(
2S2ΦA ·GA + γS3Φ2

A

) dµ
dξ

+
d

dξ

(
SΦ2

A

)
.

(35)

kAA needed in Eq. (35) will be taken from Eq. (24),

kAA = [∇A · FA]N = 4πZAρ(RA)

+
∫∫

s(r, r′)εA(r′) · εA(r)drdr′ − SΦ2
A. (36)

Identifying the derivative (∂/∂ξ)N as d/dξ since N is a global
variable, the basic formula for the peak intensity observed in
atomic reaction fragility spectra is obtained as

aA
ξ = 4πZA

d
dξ

ρ(RA) +
d

dξ

[∫∫
s(r, r′)εA(r′) · εA(r)drdr′

]

− JS2ΦA · (2GA + γSΦA) . (37)

According to the maximum hardness principle discussed by
Ordon and Tachibana,47 GA + γSΦA = 0, and the last term
is reduced to JS2ΦA · GA. Since the electric field deriva-
tive vanishes, as in Eq. (21), the integral in Eq. (37) (second
term) is simplified even further. This is demonstrated using the
expansion [as in Eq. (30)]

dεA(r)
dξ

=

atoms∑
B

dRB

dξ
· [∇BεA(r)]N = 0. (38)

The remaining integral in Eq. (37) will only contain one deriva-
tive (ds(r, r′)/dξ)N . The local approximation successfully
tested for the electric-field derivatives is helpful in reducing
the result to a comprehensive level70–72

s(r, r′) � s(r)δ(r − r′). (39)

The integral in Eq. (37) is then simplified to∫∫
ds(r, r′)

dξ
εA(r′) · εA(r)drdr′ =

∫
ds(r)
dξ

[εA(r)]2dr.

(40)

The amplitude of atomic peaks in the reaction fragility
spectrum becomes

aA
ξ = 4πZA

d
dξ

ρ(RA) +
∫

ds(r)
dξ

[εA(r)]2dr − JS2ΦA ·GA.

(41)

Equation (41) may be transformed even further by the electron-
gas approximation in order to reveal the decisive factor that
stimulates the reaction fragility spectrum intensity,

s(r) = Sf (r) = (S/N)ρ(r) (Refs. 10 and 7). (42)

Finally, the relation of aA
ξ to local-density changes induced by

the ongoing reaction is

aA
ξ = 4πZA

d
dξ

ρ(RA) +
S
N

∫
dρ(r)

dξ
[εA(r)]2dr

+ A
dS
dξ
− JS2ΦA ·GA. (43)

Here A= (1/N) ∫ ρ(r)[εA(r)]2dr. The approximate expression
[Eq. (43)] provides more understanding to the result [Eq. (41)]
by exposing the nature of the terms contributing to the atomic
fragility expression, aA

ξ . The electron density at the nucleus
ρ(RA) should be weakly sensitive to the structural modifica-
tion of the system introduced by the reaction (ξ) since only the
valence electrons are responsible for the reaction. The second
term in Eq. (43) appears to be the leading one, as it contains
the integral strongly varying with the reaction progress (via
dρ(r)/dξ) and localized on an atom. This makes it a local
sensor for the electron density variations around one spe-
cific nucleus only. Substantial contributions to the integral in
Eq. (43) come only from the areas where both the derivative
dρ(r)/dξ and the electric field of an atom |εA(r)| retain a

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-008737
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-008737
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considerable value. This is the case of the creation or rupture
of bonds by an atom.

The last two terms in Eq. (43) contain global parame-
ters (J, S, and the integral A) also variable with ρ(ξ) but are
not related to dρ(r)/dξ. The effects of change in ρ(r) are
integrated over the whole system and the local variations are
likely to be covered by the stable contributions from the parts
of the system unperturbed by the reaction. This is also the case
of two, seemingly local parameters, ΦA, GA, defined by the
integration [cf. Eqs. (8) and (10)] via the H−−F force [Eq. (6)].
S (ξ) dependence studied in earlier studies47 showed merely a
flat maximum near the TS.

The most significant feature of the above analysis is that
it demonstrates the role of local factors in the observed atomic
contribution to the reaction fragility aA

ξ . It provides a tool to
describe specifically an impact of the ongoing reaction on
the electron density around a given atom, without predefin-
ing its range by any of the available arbitrary population-
analysis algorithms. Discerning the effects introduced by the
bonds around an atom is possible using the off-diagonal
elements in the connectivity matrix. This has been demon-
strated on the basis of numerical results for two standard
reactions.

IV. RESULTS

The presented theoretical development of the fragility
spectrum has been illustrated by simple numerical studies.
For this purpose, we examined two test reactions involving
different chemical transformations: the synthesis of HF + CO
→HCOF and the isomerization of HONS→ONSH. The reac-
tions are shown schematically in Schemes 1 and 2. IRC energy
profiles were reproduced by the standard procedure at the
MP2 level using the 6-311++G(3df,3pd) basis set and the
Gaussian 09 code.73 Our approach is not limited to any partic-
ular quantum chemical computational method; MP2 appears
to be an optimal choice to obtain reliable (analytical) sec-
ond derivatives. For larger systems, DFT methods would be
more efficient due to reducing costs of calculations. Results
given in Figs. 1 and 2 present the ξ-dependence of the C
matrix elements for both reactions. The energy diagrams for
both systems have been published in earlier studies.47,55 In
Fig. 3 we present numerical results for the atomic fragility
spectra obtained by taking numerical derivatives of the kAA(ξ)
and kAB(ξ) functions vs. ξ. In both reactions, the meaning-
ful variations of the connectivity matrix elements extend well
beyond the hypothetical reaction region as limited by the min-
imum and maximum of the reaction force,55 as indicated in the
diagrams.

SCHEME 1.

SCHEME 2.

Confronting Schemes 1 and 2 with the distribution of
atomic peaks in the reaction fragility spectrum (Fig. 3) reveals
the 1:1 correspondence between bond formation/rupture and
the appearance of a pair of peaks for the two atoms affected.
The evident examples are H−−F, H−−C and F−−C bonds in
Scheme 1 [Fig. 3(a)] and H−−O and H−−S bonds in Scheme 2
[Fig. 3(b)]. A more subtle modification of bonds is also vis-
ible in the O−−C bond [Fig. 3(a)] and the O−−N and N−−S
bonds [Fig. 3(b)]. Breaking the H−−F bond is manifested by a
strictly parallel decrease in kHH and kFF elements [Fig. 1(a)].
The next step of the reaction is also evident: formation of the
C−−H bond with parallel increase of kHH and kCC [Fig. 1(a)].
Very similar effects may be observed for the H−−O and H−−S
bonds in Figs. 2(a) and 2(b). The peak intensities (areas) for
atoms represent the charge flow to/from an atom by a rough
relation56 ∆kAA = λAA ·∆NA, where λAA stands for an average
of the softening index over the peak region [Eq. (11)].

The striking similarity between atomic peaks in the spec-
tra of atoms losing or forming a bond (as described above)
provides a valuable justification for the role dρ(RA)/dξ deriva-
tive in the final equation (43). If the contribution from the
variable ρ(RA) density alone were significant, it would have
to introduce much different contributions for hydrogen and
the atoms in the 2nd period as, e.g., fluorine. Apparently, it
is the variable density in the valence region between atoms
that provides a dominating contribution to the aA

ξ = dkAA/dξ
derivative, at least for the two reactions studied in this work.
The detailed resolution of other factors contributing to the
atomic fragility [Eq. (43)] is open to further studies.

The intriguing feature of the reaction fragility spectra
(Fig. 3) is that identification of atoms active in a bond mod-
ification is straightforward. Each broken bond appears as a
pair of coupled downward peaks from the atomic contribu-
tions [e.g., H−−F in Fig. 3(a) and (H)−−(O) in Fig. 3(b)], while
newly created bonds make pairs of the upwards peaks [e.g.,
H−−C in Fig. 3(a) and (H)−−(S) in Fig. 3(b)]. The exact reac-
tion region (on the ξ axis) of bond modification is precisely
reproduced, sometime quite late, as for the F−−C bond in
Fig. 3(a), that is only created beyond the range of any con-
ceivable changes on the reaction path; this effect has been
suggested earlier by the calculation of the Wiberg indices
and the bond distance for the C−−F bond.55,56 The maxi-
mum of the fragility for C and F atoms is at ξ�+3.4, well
away from the TS and very near to the energy minimum of
products.

The atomic peaks on the fragility spectrum of the same
atoms [Figs. 3(a) and 3(b)] are generally not transferable for
different reactions except for the hydrogen atom. The hydrogen
atom with poor electron density of its own makes a single bond
only, and corresponding fragility peaks look alike for H−−X
bonds. This is not typical, as clearly seen for the oxygen atom
in both systems under study. The oxygen atom in the HF/CO
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FIG. 1. Elements of the connectivity
matrix (in a.u.) in the reaction56 HF
+ CO→HCOF. (a) Diagonal elements.
(b) Off-diagonal elements. Dashed
lines indicate the hypothetical “reaction
region” limited by the reaction-force
extremes:51 dFξ /dξ = 0.

system does not change its formal bond but still shows a very
broad fragility peak, mostly negative. This tends to indicate
that by the attachment of H and F atoms to the central carbon,
the C==O bond loses some density [Eq. (43)].

The off-diagonal elements resulting from Eq. (26) do not
provide new global information since they sum up to the atomic
contribution. The diagrams shown in Figs. 1(b) and 2(b) for
the formal bonds generally parallel the diagrams of the Wiberg
indices.55 It is instructive to observe how the off-diagonal ele-
ments kAB vary at crucial stages of the reaction; the data have
been collected in Table I. Wherever a chemical bond does not
exist, the kAB elements are close to zero, as expected. When
Eq. (24) is transformed using approximations in Eqs. (39)

and (42), the off-diagonal elements of the connectivity matrix
become

[∇A · FB]N = −SΦA ·ΦB +
S
N

∫
ρ(r)εA(r) · εB(r)dr. (44)

The value of the integral in Eq. (44) is determined by two
factors: electric density ρ(r) and the scalar product of two
electric field vectors originated from two nuclei A and B
of atoms at a distance. For non-bonded atoms, the classi-
cal ESF-(conceptual) electrostatic force analysis by Nakat-
suji is helpful in clarifying the panorama of acting forces:
the atomic dipole force (AD), the exchange force (EC), and

FIG. 2. Elements of the connectiv-
ity matrix (in a.u.) in the reac-
tion:56 HONS → ONSH. (a) Diago-
nal elements. (b) Off-diagonal elements.
Dashed lines indicate the hypothetical
“reaction region” limited by the reaction
force extremes:51 dFξ /dξ = 0.
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FIG. 3. Atomic reaction fragility spec-
tra; the derivative aA

ξ =
d

dξ (∇A · FA) is
given on the ordinate axis (atomic units).
(a) HF + CO → HCOF; (b) HONS
→ ONSH.

the gross charge force (GC).74 The integral in Eq. (44) is neg-
ligible for various reasons for each type of force. The EC force
vanishes wherever there is no bond density. Contributions from
AD and GC forces are small since εA(r) · εB(r) terms cancel
out when integrated with nearly symmetrical core density at
A and B that is dominating in the integral. Only deviations of
the spherical density distribution in the vicinity of both atoms
contribute to ∇A · FB. The leftover values in Table I for non-
bonded atoms (as opposed to those for bonded pairs) are likely
to represent the product SΦA ·ΦB only.

TABLE I. Off-diagonal elements of the connectivity matrix [kAB Eq. (24)]
calculated for the reactant state (RS), transition state (TS), and product state
(PS) in the reactions HF/CO and H/ONS (in a.u.). The existence of formal
bonds has been indicated by shadowing.

HF + CO→ HCOF (Scheme 1)

Bond C−−O C−−H C−−F O−−H O−−F H−−F

RS(ξ = �4) �1.20 �0.01 �0.02 0.00 0.00 �0.62
TS(ξ = 0) �1.21 �0.21 �0.04 0.01 �0.01 �0.06
PS(ξ = 4) �1.03 �0.43 �0.38 0.00 �0.04 �0.02

HONS→ ONSH (Scheme 2)

Bond N−−O N−−H N−−S S−−H S−−O H−−O

RS(ξ = �2) �0.38 �0.02 �0.45 0.00 �0.05 �0.50
TS(ξ = 0) �0.63 0.06 �0.35 �0.08 �0.03 �0.02
PS(ξ = 2) �0.68 �0.02 �0.13 �0.30 �0.09 0.00

It is informative to compare the kAB elements for the bonds
formed by a central atom with a group of its neighbors. By
selecting an observation point on C and N for both systems,
respectively, it is shown that the off-diagonal elements of C
matrix provide a reasonable measure for the relative strength
of the respective bonds around a central atom (Table I),

kCO(RS) : kCO(PS) � 1.2 : 1,

kCO(PS) : kCH(PS) : kCF(PS) � 2.7 : 1.1 : 1,

kNO(RS) : kNO(PS) � 1 : 1.8,

kNS(RS) : kNS(PS) � 3.5 : 1,

kNO(RS) : kOH(RS) : kNS(RS) � 1 : 1.3 : 1.2,

kNO(PS) : kSH(PS) : kNS(PS) � 2.3 : 1 : 0.4.

The difference between the C−−O bond in a free CO
molecule and in the HCOF entity is notable, as is the simi-
larity between the H−−C and C−−F bonds. According to the
bond kAB ratio in the H−−O−−N==S molecule, all three bonds
are of similar strength, although N==S is formally a double
bond. Transformation to O==N−−S−−H is marked by doubling
the N==O strengths and the decrease of the N−−S bond to less
than 1/3 of the initial value, making it, very realistically, the
weakest point of the product molecule.

Another valuable observation in Table I is the uniquely
positive value of the kNH element in the transition state (TS)
of the H/ONS system, also observed as a maximum in Fig.
2(b). The distortions from spherical symmetry around the
moving proton are unquestionable and this makes the integral
equation (44) large as for a non-bonded pair. This is in harmony
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with the old suggestion by Parr that deviations of symme-
try in the density occur only in the immediate vicinities of
atoms when they are bonded.75 This effect marks an unstable
point on the reaction path that is uniquely responsible for the
TS, unlike the HF/CO reaction where the formal TS marked
by the energy maximum does not show structural instabili-
ties. This insight into the role of structural changes upon a
reaction is new and is a very valuable feature of this present
analysis.

V. DISCUSSION AND CONCLUSION

Judging the role of terms in the working final equation [Eq.
(43)] is possible by studying the effect of twin atomic peaks on
the atomic fragility spectra for bonded atoms. The only term
that is likely to equally contribute to aA

ξ of both partners is
the density change in a bond making an element common for
both dρ(r)/dξ. The effect is strictly localized on the reaction
path for some atoms well beyond the TS [e.g., the C−−F bond,
Fig. 3(a)]. The role of the last term in Eq. (43) JS2ΦA · GA

must also be considered. An estimation of the magnitude of
that term is possible using the values reported in the literature
for its components. The combined effect is dominated by the
small value of J (up to ca.±200 kcal/mol� ±0.03 a.u.68,69) and
|ΦA |, |GA | (ca. 0.02–0.2 a.u.33). Including the softness factor
(S2 � 1 ÷ 10 a.u.47), the JS2ΦA · GA term may be smaller
than 1% of the fragility peaks intensity, ca. 0.1–1 a.u.; the
leading term in Eq. (43) is most likely the one reporting the
variation of electronic density due to the bond formation of
breaking.

The crucial result of this work is the connectivity
matrix, resulting from the formulation of the second-energy
derivatives over atomic displacements (cumulative force con-
stants) as divergences of the Hellmann-Feynman forces,
rather than derivatives over the coordinates. This produces
a significant consequence: the divergences are invariants,
either focused on atoms or on the bonds; moreover, they
do not contain the nuclear-repulsion energy component.
The overall trace of the Hessian is now decomposed into
pure atomic contributions (kAA), which is an alternative
to the Wilson method of dividing it into the contribu-
tions from the normal modes.76,77 This difference is of
great advantage in monitoring a system undergoing a reac-
tion. The variable atomic contributions to the connectivity
matrix reflect strengthening or loosening of actual bonds
upon a reaction in the framework of the Born-Oppenheimer
approximation.

Other principal outcomes of this work are the follow-
ing: (i) Definition of the atomic fragility as the derivative
over the reaction progress ξ of the Hellman-Feynman force
divergence for an atom (the diagonal elements of the connec-
tivity matrix). (ii) Proving the approximate relation between
the atomic fragility on a reaction path and the electron density
changes in the bond region of an atom, with only minor contri-
bution from the global effects [Eq. (43)]. (iii) Demonstrating
that the atomic fragility spectrum tends to indicate the bonds
created or broken in a reaction and appears to be dominated
by the electron density variation in the bonds for the inves-
tigated example reactions. Although the fragility spectrum

is focused on an atom, no formal definition for an-atom-in-
molecule is necessary for the analysis. (iv) The off-diagonal
terms of the connectivity matrix provide a precise classifica-
tion of the actual bonds formed by an atom with any of its
neighbors.

SUPPLEMENTARY MATERIAL

See supplementary material for the details concerning the
notation and calculation of the electrostatic potential diver-
gences and the expressions for the derivatives of the grand
potential in the nuclear coordinate representation for an open
system. References to this material have been marked in the
main text.
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