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Abstract: Existing approximation to the softness kernel, successfully explored in earlier work, has been extended;

the normal Gauss distribution function has been used instead of the Dirac delta. The softness kernel becomes

continuous functions in space and may be used to calculate the linear response function of the electron density.

Three-dimensional visualization of the softness kernel and the linear response function are presented for a nitrogen

atom as a working example. By using a single parameter of the spatial Gauss distribution, the novel softness kernel

has been adjusted to be consistent with the standard form of the hardness kernel, representing the leading fraction of

the electronic interactions in the system.
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Introduction

Softness kernels and hardness kernels are important nonlocal

quantities in the conceptual density functional theory. The recent

works from this laboratory have demonstrated how the approxi-

mated softness kernel can be explored in determination of the

Fukui function, which is fully consistent with the electronic

dipole polarization of the system.1,2

The fundamental quantity describing the effect of change of

the external potential t(r) on the electron density q(r) in a

closed system of N electrons is the linear response function3:

xðr; r0Þ ¼ dqðrÞ
dtðr0Þ

� �
N

(1)

This is physically sound, nonlocal function, continuous in

space. It contains full information on the electronic polarization

of a closed electronic system1;

ae ¼ �
Z Z

xðr; r0Þrr0drdr0 (2)

ae is the electron dipole polarizability tensor. A similar quantity

is the softness kernel defined as3,4:

sðr; r0Þ ¼ � dqðrÞ
dtðr0Þ

� �
l

(3)

The constant chemical potential conditions (l 5 (qE/qN)t)
indicate that the effect described by this derivative is polariza-

tion of an open system: the density change caused by the electron

flow in/out of a system as a result of the change in the external

potential. Basic properties of the softness kernel are3:

Z
sðr; r0Þdr0 ¼ sðrÞ ¼ @qðrÞ

@l

� �
t

¼ Sf ðrÞ (4)

Z Z
sðr; r0Þdrdr0 ¼ S ¼ @N

@l

� �
t

(5)

Here, f(r) 5 [qq(r)/qN]t 5 [dl/dt(r)]N is the Fukui func-

tion3; for the purpose of this analysis, the second part of the def-

inition has been explored1 leading to the single value of the

Fukui function. S stands for the global softness (inverse global

hardness) of the system. The two kernels are bound by the exact

relation4:

xðr; r0Þ ¼ �sðr; r0Þ þ Sf ðrÞf ðr0Þ (6)

The definition of the hardness kernel results from an alterna-

tive view point:

gðr; r0Þ ¼ d2F q½ �
dqðrÞdqðr0Þ (7)

F[q] is Hohenberg and Kohn universal functional. The hard-

ness kernel is functional inverse of the softness kernel3:
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Z Z
sðr; r0Þgðr0; r00Þdrdr0 ¼ 1 (8)

Little is known about the nature of kernels; only some

approximations have been examined. The independent perturba-

tion formula has been proposed for the linear response function

x(r,r0).4 The hardness kernel has been examined by several

authors: Liu et al. proposed complete neglect of the con-

tributions other than the electron–electron repulsion,5 which

leads to:

g r; r0ð Þ ¼ 1

r� r0j j (9)

Chattaraj et al. studied the Thomas–Fermi model and demon-

strated that approximation identical to eq. (9) leads to very rea-

sonable covalent radii for atoms.6 Torrent-Sucarrat et al. applied

the Thomas–Fermi model to the computationally available den-

sities and tested the method by calculation of the global hard-

ness.7 They proved that this approximation [eq. (9)] represents

the major part of the interelectronic interactions and is sufficient

to reproduce experimental values of the global hardness known

as g 5 I 2 A.
The softness kernel attracted considerable attention following

the Vela and Gaquez proposal8:

sðr; r0Þ ¼ sðrÞdðr� r0Þ (10)

This conforms to all known requirements for the softness

kernel. More elaborate versions have also been proposed by Li

and Evans9 and Garza and Robles.10 Approximation of this type

has recently been explored in the novel method for calculation

of the polarization justified Fukui functions.1,2

The aim of this study is to investigate properties of kernels,

by extending the approximation in the softness kernel [eq. (10)]

beyond the Dirac delta, thus, making it in some way nonlocal

but still consistent with the widely accepted approximation for

the hardness kernel as given by eq. (9).

The Softness Kernel and x(r,r0)

The softness kernel given by eq. (10) may be modeled by

replacing the Dirac delta with a function P(x 2 x0), such that

$ P(x 2 x0)dx 5 1. This is a property of the normal (Gauss) dis-

tribution in one dimension:

Pðx� x0Þ ¼ 1

rð2pÞ1=2
exp �ðx� x0Þ2

2r2

" #
(11)

For any parameter r[distance] and for every point in space x
this is integrated to unity. In three dimensions, with rx 5 ry 5
rz 5 r, the normal distribution becomes:

Prðr� r0Þ ¼ 1

r3ð2pÞ3=2
exp � 1

2r2
ðr� r0Þ2

� �
(12)

Although other functions may be proposed to replace the

Dirac delta, exploring the three-dimensional (3D) Gauss distribu-

tion greatly simplifies the analysis. Using eq. (12) instead of the

Dirac delta in eq. (10) gives the simple equation where the pa-

rameter r must be independently determined:

sðr; r0Þ ¼ sðrÞPrðr� r0Þ ¼ f ðrÞSPrðr� r0Þ (13)

Such softness kernel is not fully symmetric in (r,r0) and care

must be taken to keep the order of integration: first over r0, then
over r; it gives proper result (S) by double integration. This soft-

ness kernel must be verified by confronting with a measurable

physical quantity The analysis that has led to the polarization

justified Fukui functions1,2 proved that approximation by

eq. (10), leads to accurate reproduction of the electronic dipole

polarizability for atoms. The analysis must now be repeated with

eq. (13).

At the basic level (the local approximation, LA) the local

polarization vector has been defined as the vector derivative of

the density over the electron field e in the symbolic notation1:

a!ðrÞ ¼ � @qðrÞ
@e

� �
N

¼ �
Z

xðr; r0Þr0dr0 (14)

Using eq. (6) and exploring eq. (13) for the softness kernel

of an atom produces the result identical to the one obtained

originally with eq. (10):

f LAðrÞ ¼ a!ðrÞ � r
r2

Z
a!ðrÞ � r

r2
dr

� ��1

(15)

This Fukui function is computable and may serve for the pur-

pose of modeling the softness kernel itself through eq. (13)

[with eq. (4)]. However, such a LA provided rather crude results

even for atoms (cf. ref. 1). The more realistic approximation for

the FF has been obtained with the more elaborated version of

the softness kernel instead of eq. (10)1:

sðr; r0Þ ¼ kðrÞdðr� r0Þ þ bqðrÞqðr0Þ þ cSf ðrÞf ðr0Þ (16)

where k(r), b, and c are arbitrary parameters. Using the Gauss

function instead of the Dirac delta in eq. (16) and eliminating

parameters leads to the Fukui function identical to the one in

ref. 1.

f ðrÞ ¼ df LAðrÞ þ ð1� dÞf EGðrÞ (17)

Here, fEG(r) 5 q(r)/N and parameter d is independently

established for atoms.1,2 This result may be used in eq. (13)

leading to the explicit equation for the softness kernel. Equation

(17) has only been proved for atoms; extension to molecules is

nontrivial as the spherical symmetry of atom greatly simplified

the analysis.11 The linear response function is then obtained via

eq. (6).

The kernels described in this section are physical functions

in 3D space; examples have been provided in the last section of
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this article. The unknown parameter r, the half width of the

Gauss distribution, must be resolved first. This will be done by

the analysis of the hardness kernel given by eq. (9).

The Hardness Kernel

The widely used form of the hardness kernel [eq. (9)] is moti-

vated by the electron repulsion formula; this interaction is

deemed to have a major contribution to this kernel. The global

hardness results by integrations of the hardness kernel:

g ¼ @2E

@N2

� �
t

¼
Z Z

gðr; r0Þf rÞf ðr0ð Þdrdr0 ¼ I � A (18)

It has been demonstrated for a collection of more than 50

atoms and atomic ions1,2 that the polarization justified Fukui

functions [eq. (17)] and the basic hardness kernel [eq. (9)] repro-

duce the global hardness for this group by eq. (18) with impres-

sive accuracy (except for the noble gases and the fluorine anion),

better than any other approach.5 This result suggests that the

polarization justified Fukui functions represent an implicit, well-

balanced approximation for the density derivatives. Hence, the

basic identity [eq. (8)] will be explored to identify the parameter

r. Equations (9) and (13) with eq. (8) lead to:

S

Z Z
f ðrÞ

r0 � r00j jPr r� r0ð Þdrdr0 ¼ 1 (19)

The left hand side might be a function of r@, depending on

the quality of approximations explored. With r ? 0 the Gauss

distribution tends to d (r 2 r0) and the integral becomes

Z
f ðrÞ
r� r00j jdr ¼ gðr00Þ (20)

This result has been known as the electrostatic potential of

the Fukui function or the local hardness, first calculated for

atoms by Chattaraj et al.6 g(r@) � g but contains only weak de-

pendence on r@ at reasonable distances from a nucleus. As r is

an arbitrary parameter only, it may be most reasonably identified

for the point of maximum density, hence at r@ 5 0 assuming

g(r@ 5 0) 5 g 5 I 2 A. This produces the computable result

directly dependent on the single parameter r:

r�3ð2pÞ�3=2

Z
f ðrÞdr

Z
1

r0j j exp �ðr� r0Þ2
2r2

" #
dr0 ¼ I � A

ð21Þ

Results and Discussion

The Fukui function calculated in previous work for a nitrogen

atom has been explored as a test in this present work.1,2 It

resulted from calculations with the Gaussian 03 code12 by the

B3LYP method with aug-cc-pvqz basis set. Calculated data are:

� Global hardness 5 g 5 I 2 A 5 14.4251 a.u. (experiment:

14.46, ref. 13).

� Electron dipole polarizability 5 haei 5 7.79 a.u. (experiment:

7.42, ref. 14).

� Parameter in eq. (16) (dimensionless) 5 d 5 1.066, ref. 1.

� Parameter r (length) 5 r 5 0.775 a.u., eq. (21), this work.

Determination of the r parameter opens the way to inspec-

tion of the spatial properties of the kernels. To visualize the non-

local function in the 3D space, one of the points must be fixed.

The arbitrary choice was to fix the reference point at r 5 1.50

a.u. from the nucleus at the point of the maximum of the radial

Fukui function, as presented in Figure 1 and locate the reference

point at z axis. With this choice, spatial pictures of x(r,r0) and
s(r,r0) have been shown in Figures 2 and 3, respectively.

The general feature of the x(r,r0) and s(r,r0) functions at the

reference point (maximum effect) is symmetric, which has been

expected from their binding equation (eq. 6), considering rather

small contributions from the last FF term (cf. Fig. 1). However,

in the region close to the nucleus, both x(r,r0) and s(r,r0) show

Figure 1. Radial Fukui function for the nitrogen atom as presented

in previous work1,2; the choice of r 5 1.50a.u. has been indicated

(a.u. on axes).

Figure 2. The linear response function for the nitrogen atom

located at the origin, drawn at the reference point at the z axis r

[0,0,1.50]. (a.u. on axes).
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the same negative effect: It comes directly from the negative

sign of the FF function f(r) in this region.

Parameter r has been found by interpolation between a series

of computed values for the left hand side of the eq. (21) to

match the computed global hardness. It is interesting to see this

parameter to be within the range of interelectron distances for

an atom. This value has been used to depict the shape of the

softness kernel and the linear response function. Parameter r
(and the normal Gauss distribution itself) appears to represent an

effective correction to the original Vela and Gazques proposal

[eq. (10)], compensating the arbitrary use of the approximated

hardness kernel [eq. (9)] in otherwise exact eq. (8). The polar-

ization justified Fukui function used in eq. (21) has been

obtained from the electron density calculated at the DFT level,

then differentiated over the external field to yield the local

polarization vector a!ðrÞ, eq. (14). This requires considerably

high computational accuracy necessary to reproduce the electron

dipole polarizability [eqs. (14) and (2)], quite sensitive to the

choice of the basis set. Thus, f(r) properly contains all contribu-

tions to the electron energy, including the electron correlation

term. On the other hand, the hardness kernel [eq. (9)] has been

known to contain nothing but the effect of interelectronic repul-

sion; the problem has been discussed in detail in the preceding

work.1 Forcing the eq. (8) to be at least approximately fulfilled

brings the two kernels to a harmony.

Conclusions

Replacing the Dirac delta with the 3D Gauss distribution in the

working formula for the softness kernel has led to the identical

Fukui function for atoms as originally obtained. By making the

kernel continuous in space, it allows to visualize the softness

kernel for the first time. The novel softness kernel [eq. (13)]

with the optimized half width of the Gauss distribution r is tai-

lored to be coherent with the hardness kernel in its simple and

widely accepted form [eq. (9)]. The resulting radius hides the

correlation effects and thus may well be considered an effective

average correlation radius for the electronic system.
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1. Komorowski, L.; Lipiński, J.; Szarek, P. J Chem Phys 2009, 131,

124120.

2. Szarek, P.; Komorowski, L.; Lipiński, J. Int J Quantum Chem 2010,
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