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The Fukui functions based on the computable local polarizability vector have been presented for a
group of simple molecules. The necessary approximation for the density functional theory softness
kernel has been supported by a theoretical analysis unifying and generalizing early concepts pro-
duced by the several authors. The exact relation between local polarizability vector and the deriva-
tive of the nonlocal part of the electronic potential over the electric field has been demonstrated. The
resulting Fukui functions are unique and represent a reasonable refinement when compared to the
classical ones that are calculated as the finite difference of the density in molecular ions. The new
Fukui functions are strongly validated by their direct link to electron dipole polarizabilities that are
reported experimentally and by other computational methods. © 2011 American Institute of Physics.
[doi:10.1063/1.3603449]

I. INTRODUCTION

The idea of the Fukui function (FF) has been introduced
into the conceptual density functional theory (DFT) by Parr
and Yang in 1984.1 The derivative of the electron density
has been identified via the Maxwell relation as the functional
derivative of the chemical potential with respect to the ex-
ternal potential at point r. FF has been widely recognized
as a potential source of information on molecular properties
[Eq. (1)],2

f (r) =
(

∂ρ(r)

∂ N

)
υ

=
(

δμ

δυ(r)

)
N

, (1)

ρ(r) is the electron density function, υ(r) is the external po-
tential, and μ is the chemical potential of the system.

Demonstrating the utility of the FF in describing chem-
ical reactivity of molecules has been a target of numerous
studies with a limited success: practical approaches have not
been extended beyond the first approximations to FF based
on readily computable electron density for a molecule and its
respective ions,3–5

f EG(r) ∼= ρ(r)

N
the electron gas approximation, (2)

f +/−(r) ∼= 1

2
[ρ−(r) − ρ+(r)]

the finite difference approximation. (3)

Practical use of the FF has been concentrated on two sets
of issues: the FF condensed to atomic resolution6, 7 and gen-
eration of the actual maps of the electron density derivative.

a)Author to whom correspondence should be addressed. Electronic mail:
ludwik.komorowski@pwr.wroc.pl.

Theoretical significance of the FF for the conceptual DFT has
been brought up by many authors;2–6 relations of the FF to
other potential reactivity indices: softness, nuclear reactivity
etc., have also been demonstrated.2, 8–10

The profound theoretical work by several authors, ex-
ploring more refined approaches to the FF, has never been
extended to objects other than atoms.11–15 This situation has
been stimulating the preferential use of the Fukui function in
chemical reactivity studies that reproduce tentatively the elec-
trophilicity and/or nucleophilicity of the reagents. No phys-
ical effect has ever been indicated to provide a measurable
quantity leading to the Fukui functions.

The evident chemical context of the Fukui functions
(and the Fukui indices for bonded atoms)16 has stimulated
theoretical chemists to concentrate on the molecule exchang-
ing electrons. Deducing properties of a molecule from the
well-defined changes of the electron density upon ionization
as observed in the respective ions [Eq. (1), first part and
Eq. (3)] have been a primary target of many studies.17 The
fundamental difficulty in calculating the derivatives over the
discrete and variable number of electrons N has been well
recognized and led Ayers, De Proft et al.14 to the conclusion
that, perhaps, a single (average) chemical potential does
not exist since the molecular reactivity must be separately
analyzed for the nucleophilic and electrophilic region. If true,
this conclusion would have far reaching consequences for the
whole density functional theory, based on Parr’s unique idea
that the chemical potential of the electrons in any system can
be defined as,2, 18

μ ≡ δEυ [ρ]

δρ(r)
=

(
∂ E

∂ N

)
υ

. (4)

The chemical potential, like the energy itself, must be a
functional of ρ;19 due to the latter equality in Eq. (4) it is
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a function of the external potential υ(r). While the first part
of Eq. (4) is strictly defined also for a single molecule (μυ),
the second part thereof is subject to operational approxima-
tion leading to the numerical value for μ. The result intro-
duced by Parr et al. in the landmark paper18 has been com-
monly used and also substantiated theoretically by Perdew
et al.:20 μ = (∂ E/∂ N )υ = −1/2(I + A). As noted by Ayers
and Parr,21 this implies using the grand canonical ensemble
to extend density functional theory to nonintegral numbers of
electrons and thus, it is correct in non-zero temperatures only.
This result is important and widely used, as it brought density
functional theory into harmony with the earlier chemical idea
of electronegativity by Mulliken:22, 23 χ = 1/2(I + A) = −μ.
Also, it is consistent with the finite difference approximation
or the once-explored quadratic model for E(N ) function24

that still attracts some attention and that has been recently
rationalized.25 Recalling the fundamental equation of the con-
ceptual DFT: μ = υ(r) + δFH K [ρ]/δρ(r), it should be noted
that the chemical potential (the number) like the electrostatic
potential υ(r), is only determined to within a constant. Other
choices have also been suggested:24, 26, 27 μ = 0 for an iso-
lated object in equilibrium. This choice has not yet attracted
attention in the literature. The result μ = −1/2(I + A) has
been widely accepted not only because it provided a much
needed numerical value to the chemical potential but also
as it is coherent with the common formula for the Fukui
function [Eq. (3)] that stems from the original concept by
Fukui.16

Despite the disputable value for the chemical potential
itself, the derivative of the chemical potential may be deter-
mined by the second part of the two equivalent definitions of
the Fukui functions as shown in Eq. (1), this has been explored
only recently.14, 15 The authors calculated the change in the
Kohn-Sham orbital energies induced by perturbations in the
molecular external potential and have thus avoided differenti-
ation with respect to the electron number in the resulting FF,
abandoning the idea of a unique chemical potential and using
the one from above and from below μ+ = −A and μ− = −I ,
respectively.

A analysis circumventing this limitation has been pro-
vided by the present authors.28 It has been noted that the
derivative f (r) = [δμ/δυ(r)]N must contain an effect of the
polarization of the electron density in the (uniform) electric
field ε. The local polarization vector (a computable quantity)
has been defined in this analysis28 as,

αi (r) ≡ −
(

∂ρ(r)

∂εi

)
N

(i = x, y, z). (5)

A similar concept has been explored by Kristhal, Senet, and
van Alsenoy in their contemporary study of the group polar-
izabilities in a series of aminoacids.29 The authors focused
their attention on the local polarizability αi j (r) = r jαi (r)
only.

The FF have been calculated for atoms as28

f (r) = d
α(r) · r

r2

[∫
α(r) · r

r2
dr

]−1

+ (1 − d)
ρ(r)

N
. (6)

The single parameter d (for most atoms close to 1) is readily
computed for any atom by exploring the fundamental property

of the FF:11, 28
∫

f (r)r−1dr = −[∂μ/∂ Z ]N . Crucial for the
derivation of Eq. (6) was the approximation for the softness
kernel based on the Vela and Gazquez proposal30 (later refined
by other authors31, 32),

s(r, r′) = −
(

δρ(r)

δυ(r′)

)
μ

≈ S f (r)δ(r − r′), (7)

where S is molecular softness or inverse global hardness η:
η = (∂2 E/∂ N 2)υ = I − A. FF for many atoms have been
computed and discussed.28, 33 Also, the spatial properties for
the softness kernel have been analyzed.34 The resulting FF
reproduces precisely the electron dipole polarization of the
system and also its global softness. It has been demon-
strated that this requires considerably refined functionals in
the computation process of the density and its derivative
[Eq. (5)].

This present work is focused on extending the approach
to molecules. This is non-trivial, since the spherical symmetry
of atoms greatly simplified the original analysis leading to the
polarization justified Fukui functions. Therefore, the general
theory is presented first, followed by the approximations and
calculation method.

II. THE SOFTNESS KERNEL IN THE DFT

The energy density functional has the form (quite gen-
eral),

E[ρ] =
∫

ρ(r′)υ(r′)dr′ + FH K [ρ]. (8)

The functional derivative over the density gives the standard
expression for the chemical potential,

μ = δE[ρ]

δρ(r)
= υ(r) + u(r). (9)

Assume that the universal modified electron potential u(r) is
additively composed of two parts: uL (r) – local (some func-
tion of the density, like kinetic or exchange terms in the
Thomas-Fermi model) and uN L (r) – nonlocal (some func-
tional of the density, like the electron repulsion term). Then

μ = υ(r) + uL (r) + uN L (r). (10)

The functional derivative [δ/δυ(r′)]μ leads to

0 = δ(r − r′) + duL

dρ

[
δρ(r)

δυ(r′)

]
μ

+
[
δuN L (r)

δυ(r′)

]
μ

. (11)

Hence, the softness kernel: s(r, r′) = −[δρ(r)/δυ(r]μ
becomes

s(r, r′) = k(r)δ(r − r′) + k(r)

[
δuN L (r)

δυ(r′)

]
μ

. (12)

Integration of Eq. (12) must give the local softness. Hence

k(r) =
(

duL

dρ

)−1

= s(r)

1 −
[
∂uN L (r)

∂μ

]
υ

, (13)
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where the following helpful relationship has been used∫ [
δuN L (r)

δυ(r′)

]
μ

dr′ = −
∫ ∫

δuN L (r)

δρ(r′′)
s(r′, r′′)dr′dr′′

= −
∫

δuN L (r)

δρ(r′′)
s(r′′)dr′′

= −
[
∂uN L (r)

∂μ

]
υ

. (14)

Using this and doing the necessary algebra leads to the ex-
pression for the softness kernel,

s(r, r′) = s(r)δ(r − r′) + p(r, r′). (15)

The first term on the right-hand side represents the Vela
and Gazquez proposal30 [Eq. (7)]. The second term repre-
sents the intuitive extension proposed by Garza and Robles:31

p(r, r′) = ρ(r)ρ(r′) and by Li and Evans:32 p(r, r′) ∝
S f (r) f (r′). It is now possible to have the nonlocal term
p(r, r′) defined rigorously,

p(r, r′) = s(r)

1 −
[
∂uN L (r)

∂μ

]
υ

{[
δuN L (r)

δυ(r′)

]
μ

+ δ(r − r′)
[
∂uN L (r)

∂μ

]
υ

}
. (16)

III. THE LOCAL POLARIZATION VECTOR AND THE
FUKUI FUNCTION

The constant nuclear positions (i.e., the external poten-
tial) have been assumed in the subsequent analysis. This is a
well-recognized regime for polarization phenomena, as sepa-
ration of the electron and atomic polarization effects is exper-
imentally well founded. The dipole moment of a system is (in
atomic units)

M =
nuclei∑

i

Zi Ri −
∫

rρ(r)dr = Mn − Me. (17)

Hence its derivatives over the number of electrons (N) and the
electric field (ε) are

M(N ) =
(

∂M
∂ N

)
υ

= −
∫

r f (r)dr = −M(N )
e , (18)

M(ε) =
∫

rα(r)dr = −
∫ ∫

rr′ω(r, r′)drdr = αe. (19)

Here ω(r, r′) = [δρ(r)/δυ(r′)]N is the linear response
function35 and αe is the electronic dipole polarizability ten-

sor of a system.
The local polarization vector (a computable quantity) has

been introduced in the preceding work28 [Eq. (5)]. It is di-
rectly related to the linear response function,

α(r) = −
∫

r′ω(r, r′)dr′. (20)

The Berkowitz and Parr relation36

ω(r, r′) = −s(r, r′) + s(r) f (r′), (21)

and the general result for the softness kernel [Eqs. (15) and
(16)] leads to the result,

α(r) =
∫

r′s(r, r′)dr′ − s(r)M(N )
e

= s(r)
[
r − M(N )

e

] + p(r), (22)

The p(r) vector is given as

p(r) =
∫

r′ p(r, r′)dr′. (23)

For p(r, r′) see Eq. (16). In order to get the final result for p(r)
in a transparent form, the derivative of the nonlocal electronic
potential over the field is introduced in the symbolic notation
using dυ(r) = r · dε (as in Ref. 28),∫ [

δuN L (r)

δυ(r′)

]
μ

r′dr′ =
[
∂uN L (r)

∂ε

]
μ

. (24)

The derivative at constant μ (above) may be replaced by the
accessible derivative at constant N (closed system). This is
readily done for another important derivative, by using the
Berkowitz and Parr relation again [Eq. (21)],36

[
∂ρ(r)

∂ε

]
μ

=
∫ [

δρ(r)

δυ(r′)

]
μ

r′dr′ =
∫

ω(r, r′)r′dr′

−
∫

s(r) f (r′)r′dr′ =
[
∂ρ(r)

∂ε

]
N

− s(r)M(N )
e .

(25)

Using this result the required derivative is transformed,[
∂uN L (r)

∂ε

]
μ

=
∫

δuN L (r)

δρ(r′)

[
∂ρ(r′)

∂ε

]
μ

dr′

=
[
∂uN L (r)

∂ε

]
N

− M(N )
e

[
∂uN L (r)

∂μ

]
υ

. (26)

Finally,

p(r) = s(r)

1 −
[
∂uN L (r)

∂μ

]
υ

{[
∂uN L (r)

∂ε

]
N

+ [
r − M(N )

e

] [
∂uN L (r)

∂μ

]
υ

}
. (27)

Introducing this into Eq. (22) leads to the important and exact
result that combines derivatives of the nonlocal electronic po-
tential with other quantities: either directly computable (α(r)),
or accessible with some chemical intuition (s(r), M(N )

e ),

α(r)

{
1 −

[
∂uN L (r)

∂μ

]
υ

}

= s(r)

{
r − M(N )

e +
[
∂uN L (r)

∂ε

]
N

}
. (28)

This simple and appealing relation opens a way to the variety
of applications. The purpose of this present work is to assess
the local softness s(r) (hence the Fukui function therein) ob-
tained with the refined approximation to the softness kernel
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and to demonstrate the limitations still hidden therein. Study-
ing the properties of the nonlocal electronic potential through
Eq. (28) is a subject of separate work.37

IV. THE CALCULATION METHOD

The approximation for the softness kernel successfully
tested for atoms was adopted by generalizing the preceding
efforts and contains complete expansion within the first order.
In final form this proposal has been originally introduced in
previous work,28

s(r, r′) = (1 − c)s(r)δ(r − r′) − bNρ(r)δ(r − r′)

+ bρ(r)ρ(r′) + cS f (r) f (r′). (29)

This is equivalent to the following arbitrary form for p(r, r′)
[Eq. (16)],

p(r, r′) = cs(r){ f (r′) − δ(r − r′)}

+ bNρ(r)

{
ρ(r′)

N
− δ(r − r′)

}
. (30)

This expression contains parameters b, c to be determined.
The local polarization vector within this practical approach
reads

α(r) = (1 − c)s(r)
[
r − M(N )

e

] + bρ(r) [Me − Nr] . (31)

In consequence, the approximation for the p(r) vector is im-
plied in the form,

p(r) = −cs(r)
[
r − M(N )

e

] + bρ(r) [Me − Nr] . (32)

Equation (31) represents considerable simplification of the
general result [Eq. (28)]. A unique solution for the local soft-
ness and the Fukui function f (r) = s(r)/S from the vec-
tor equation [Eq. (31)] containing arbitrary parameters is
not guaranteed. Specifically, the approximated p(r) vector
may not reproduce the direction of the exact vector [Eq.
(27)] at every point in space. However, since Eq. (29) was
built on the assumption that b and c parameters do ex-
ist, the conditions that warrant the existence of a solution
of Eq. (31) for the s(r) function must be examined and
rationalized.

To calculate the unique value for s(r), the vector
[Eq. (31)] may be transformed into an algebraic equation by
appropriate projection onto the [r − M(N )

e ] vector. In order to
eliminate the singularity of s(r) at r∗ = M(N )

e , a unique pa-
rameter b may be calculated from

α(r∗) = bρ(r∗)[Me − Nr∗] for r∗ = M(N )
e . (33)

This yields parameter b that warrants existence of a solution
for s(r) in every point in space,

b = 1

ρ(r∗)

α(r∗) · [Me − N · M(N )
e ][

Me − N · M(N )
e

]2 . (34)

For centro-symmetric objects this condition must be modi-
fied, since M(N )

e = 0 and Me = 0. Taking the origin at the
symmetry center, considering α(0) = 0 and expanding α(r)

vector in a series over r around r = 0 we have

b = − 1

Nρ(0)

{[
∂αx (r)

∂x

]
r=0

+
[
∂αy(r)

∂y

]
r=0

+
[
∂αz(r)

∂z

]
r=0

}
. (35)

Equations (34) and (35) provide a condition for the choice
of b that warrants a unique solution for Eq. (31). To achieve
the result for the Fukui function the same projection onto the
[r − M(N )

e ] vector must be used that validated the condition
for b,

s(r) = α(r)
[
r − M(N )

e

] − bρ(r)[Me − Nr]
[
r − M(N )

e

]
(1 − c)

[
r − M(N )

e
]2 .

(36)
This is integrated to the global softness,

S =
∫

s(r)dr ≡ K

1 − c
, (37)

where by definition

K ≡
∫

α(r)
[
r − M(N )

e

] − bρ(r)[Me − Nr]
[
r − M(N )

e

]
[
r − M(N )

e
]2 dr.

(38)
Hence, the Fukui function is obtained. Parameter c does not
appear,

f (r) = s(r)∫
s(r)dr

= 1

K
[
r − M(N )

e
]2

× {α(r) − bρ(r)[Me − Nr]} [
r − M(N )

e

]
. (39)

The global softness resulting from Eq. (37) may be arbitrary,
considering the approximations employed; the K integral is
computable but the c parameter remains unknown. By fixing
the global softness at S = (I − A)−1, parameter c is obtained
as

c = 1 − K/S = 1 − K (I − A) . (40)

V. RESULTS AND DISCUSSION

The electron density has been calculated by the
GAUSSIAN 03 code,38 the DFT B3LYP method. The aug-cc-
pvqz basis set has been used. The local polarizability vector
α(r) [Eq. (5)] has been calculated by the finite field procedure.
The electron dipole polarizability for each molecule was ob-
tained by numerical integration of α(r)r and served the pur-
pose of testing whether the calculation scheme or the basis
set properly reproduce the polarizability of the system. The
calculated energies and polarizabilities as well as the respec-
tive reference data are shown in Table I. The derivative of the
electronic dipole moment was calculated by the finite differ-
ence method, based on the results for the respective molecular
cation and anion. Note that the [r − M(N )

e ] vector is transla-
tionally invariant, while the M(N )

e alone is not. The calculated
parameters that appear in the working approximation are col-
lected in Table II. The resulting diagrams of the Fukui func-
tions are shown in Figs. 1–3, together with the diagrams of
classical Fukui functions f± = 1/2(ρ− − ρ+). The diagrams
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TABLE I. The optimized molecular geometry, global hardness (I-A), electron dipole polarizability, and dipole moments for the set of molecules studied. The
orientation of the coordinate system is found in the diagrams in Figs. 1–3. All data are presented in the atomic units.

Molecule LiH HF CO N2 H2CO

R 3.004 1.7428 2.1236 2.1802 CO: 2.2641 CH: 2.0898
I-A 0.3203 0.5829 0.4848 0.4870 0.3410
αxx = αyy calc. 30.56 5.34 12.11 10.37 αxx = 13.19 αyy = 18.50
αzz calc. 28.51 6.62 15.42 15.06 22.71
〈α〉 calc. 29.88 5.77 13.21 11.93 18.10
〈α〉/(reference) 28.43/(Ref. 40) 5.60/(Ref. 41) 13.09/(Ref. 41) 11.74 /(Ref. 41) 16.5/(Ref. 42)
M(z) [Eq. (17)] −2.2467 −0.7114 0.0392 0 −0.9294
Me(z) [Eq. (17)] −0.7572 7.6822 2.0844 0 0.9294

M (N )
e(z) [Eq. (18)] −2.3023 −0.4541 −1.3678 0 −0.4934

TABLE II. Parameters calculated for the molecules (in a.u.).

Molecule LiH HF CO N2 H2CO

b 103 [Eqs. (34) and (35)] − 40.893 − 27.489 − 2.257 − 6.264 − 31.776
K [Eq. (38)] 3.3704 2.1456 5.0405 4.4970 − 3.8499
c [Eq. (40)] − 0.0794 − 0.2506 − 1.4436 − 1.1900 2.3129(
∂uN L/∂μ

)
υ

[Eq. (43)] 0.0736 0.2004 0.5908 0.5434 1.7617

FIG. 1. The Fukui functions (in a.u.) in the xz plane for the molecules oriented with the bond along z direction (on the abscissa). The upper half: f – this
work; the lower half: f± ∼= 1/2(ρ− − ρ+). Logarithmic reduction of scale has been applied and indicated by shadows; negative values by dotted lines. (a) LiH
molecule and (b) HF molecule.

FIG. 2. The Fukui functions (in a.u.) in the xz plane for the molecules oriented with the bond along z direction (on the abscissa). The upper half: f – this
work; the lower half: f± ∼= 1/2(ρ− − ρ+). Logarithmic reduction of scale has been applied and indicated by shadows; negative values by dotted lines. (a) CO
molecule and (b) N2 molecule.
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FIG. 3. The Fukui functions (in a.u.) in the xz and yz planes for the H2CO molecule oriented with the CO bond along z direction (on the abscissa). The upper
half: f – this work; the lower half: f± ∼= 1/2(ρ− − ρ+). Logarithmic reduction of scale has been applied; negative values by dotted lines. (a) Molecular plane
(xz), with the position of the hydrogen atoms indicated (×) and (b) plane perpendicular to the molecular plane (yz).

also indicate the location and orientation of the molecules in
the coordinate system.

The diagrams for the calculated Fukui functions as com-
pared to the classical ones (Figs. 1–3) demonstrate rough
qualitative agreement. In all molecules studied, the new
FF shows steeper slopes near nuclei than f±. In two HX
molecules (Fig. 1) f and f± around the hydrogen atom are
much alike. They show remarkable differences in location
of the negative value area near the heavy atom. In both
HX molecules, the hydrogen atom tends to localize the ex-
cess charge (positive f region). In the non-polar CO and N2

molecules the maps of f and f± match quite closely, especially
at large distances from the nuclei. In the CH2O molecule, the
regions of negative (but exceedingly small f ) Fukui functions
far from the nuclei in the molecular plane are believed to be
an effect of inadequate accuracy of the calculation’s proce-
dure. At intermediate distances from the nuclei, the f and f±
functions are in a reasonable agreement. Comparing the FF
in CO and in CH2O molecules indicates that the π -frontier
orbital FF region in CO is disturbed by the two CH σ -bonds
in the formaldehyde molecule. This results in a displacement
of the π -Fukui function region further from the CO bond axis
and out of the molecular plane; also the reduction and sub-
division of this region in the molecular plane due to the two
neighboring C-H and one C-O σ -bonds is observed.

The inspection of the detailed differences between f and
f± calls for further testing of the polarization justified FF’s in
the studies of the reaction path, as they contain direct infor-
mation on the response of the actual density in the molecule
to the external potential due to the approaching agent. This
appears to be a much superior source of information as com-
pared to the average density of ions, that served to estimate of
the classical f± functions. As demonstrated recently by Tozer
and De Proft,39 the density of the molecular ion (ρ−) is of
questionable value for many molecules with unstable anions.
The authors indicated a way to overcome this difficulty but the
result will still be sensitive to the choice of the basis set. The
new FF proposed in this work is only dependent on the basis
set through the α (r) derivative. This dependence is controlled
by using a basis set sufficient for the proper reproduction of

the electron dipole polarizability, obtained independently; the
result needs no additional refinement.

The calculation scheme described in Sec. IV has been
built on the refined approximation to the softness kernel with
two arbitrary parameters b, c. They have been determined in
the calculation procedure and are shown in Table II. The gen-
eral and exact result [Eq. (28)] connecting the computable
vector derivative α(r) to the unknown derivatives of the non-
local electronic potential now allows for calculation of the
later. This will be done by identifying expressions for the p(r)
vector: the approximate [Eq. (32)], and the exact one below
[transformed [Eq. (27)]

p(r) =

[
∂uN L (r)

∂μ

]
υ

1 −
[
∂uN L (r)

∂μ

]
υ

s(r)
[
r − M(N )

e

]

+ s(r)

1 −
[
∂uN L (r)

∂μ

]
υ

[
∂uN L (r)

∂ε

]
N

. (41)

Equations (32) and (41) represent vectors with first compo-
nents being identical, hence it must be

[
∂uN L (r)

∂μ

]
υ

{
1 −

[
∂uN L (r)

∂μ

]
υ

}−1

= −c. (42)

This imposes an approximation

[
∂uN L (r)

∂μ

]
υ

∼=
(

∂uN L

∂μ

)
υ

= c

c − 1
. (43)

Comparing the second vector terms in Eqs. (32) and (41) leads
to

s(r)

1 −
[

∂uN L (r)
∂μ

]
υ

[
∂uN L (r)

∂ε

]
N

= bρ(r) [Me − Nr] . (44)
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This shows the implied approximation for the derivative [with
the use of Eqs. (43) and (40)],

[
∂uN L (r)

∂ε

]
N

= b [K (I − A)]−1 ρ(r)
s(r) [Me − Nr] .

(45)

Equations (43) and (45) demonstrate the consequences
of the applied approximation for the softness kernel
[Eq. (29)]. Calculated values for the spatially averaged deriva-
tive

(
∂uN L/∂μ

)
υ

are presented in Table II. These data may
be cross-referenced assuming that the contribution from the
coulomb potential is a substantial part of this derivative,

uN L (r) ≈
∫

ρ(r′)
|r − r′|dr′. (46)

Hence, the derivative should be related to the electrostatic po-
tential of the Fukui function,11

[
∂uN L (r)

∂μ

]
υ

≈ S
∫

f (r′)
|r − r′|dr′. (47)

Numerical data for the integral in Eq. (47) have been known
for atoms (e.g., Ref. 11). They are positive numbers with
moderate variation from a maximum near the nucleus (∼1.0
a.u.) to ∼0.1 a.u.; they tend to increase with increasing num-
bers of electrons in the system. The numerical results for(
∂uN L/∂μ

)
υ

in Table II must be considered very reasonable
for an average value of this derivative.

The consequences of the approximation for the vector
derivative (∂uN L/∂ε)N in Eq. (45) are more complex. To ap-
preciate this, Eq. (45) must be reconciled with the expectation
from the exact Eq. (28),

[
∂uN L (r)

∂ε

]
N

= α(r)

s(r)

{
1 −

[
∂uN L (r)

∂μ

]
υ

}
− [

r − M(N )
e

]
.

(48)
This exact vector derivative represents a sum of the two well-
defined vector contributions and unveils an interesting general
property of the derivative of the total nonlocal electronic
potential. In any electronic system, the vector [∂uN L (r)/∂ε]N

at every point r must be in plane defined by the pair of the
well-defined vectors: α(r) and [r − M(N )

e ]. This condition
is not affected by whatever approximation for (∂uN L/∂μ)υ
is employed in order to evaluate s(r). Comparing Eq. (48)
to Eq. (45) it becomes clear that, in general, the working
approximation applied in Eq. (45) (cf., Sec. IV) would not
warrant compliance with the above requirement. On the other
hand, the condition is trivially met for an atom: due to its
spherical symmetry Me = 0 and M(N )

e = 0; hence the vector
derivatives in Eqs. (45) and (48) are collinear. In consequence,
the solution for s(r) in the basic vector equation [Eq. (31)] is
guaranteed for an atom as demonstrated in earlier works.28, 33

In a system of lower symmetry, the vector given by
Eq. (45) and used in Eq. (31) may not meet the requirement
of Eq. (48). To warrant a solution and a unique numeri-
cal value for s(r) from the approximate vector equation
[Eq. (31)] an additional projection procedure was necessary.

VI. CONCLUSION

A theoretical analysis has been presented, leading to the
general exact relation between the local polarization vector
and the derivatives of the nonlocal electronic potential. Cal-
culation of the Fukui function for molecules was subjected to
more extensive approximations than was possible for atoms.
A proposed calculation procedure for the molecules produced
Fukui functions that reproduce qualitative expectations for the
collection of simple species, and contain information on the
properties of the electron density in a molecule itself, with-
out direct reference to the densities of its ions. Only minor
increase in computer costs is involved of the order of a self-
consistent field run to calculate the α(r) vector components.
The novel property of the derivative [∂uN L (r)/∂ε]N of the
nonlocal electronic potential is reported that may be of in-
terest in studying the requirements for the approximations for
the energy density functional.
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