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Polarization justified Fukui functions
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New Fukui functions have been derived within the conceptual density functional theory by the
analysis of the polarization effect of a system in static electric field. Resulting Fukui functions
accurately reproduce the global softness and electronic dipolar polarizability; they meet the
condition [[f(r)/r]ldr=—(du/dZ), and lead to very reasonable values of the global hardness for
atoms for the group of 29 main group elements. Computational clarity makes the new Fukui
functions a promising tool in studies of molecular reactivity. © 2009 American Institute of Physics.

[doi:10.1063/1.3239503]

I. INTRODUCTION

Fukui function (FF) has been first introduced by Parr and
Yangl’2 in 1984 as a derivative of the electron density, or the
functional derivative of the chemical potential over the ex-
ternal potential function »(r) in the density functional theory
(DFT):

f(r)_( ON )U_ Su(r) )y M

u=(JE/N), being the chemical potential of the system.
Ever since FF has been a target of many studies, computa-
tional as well as chemical in nature. The widespread interest
in this quantity has been stimulated by its relation to the
reactivity indices in the frontier molecular orbital theory by
Fukui.® Recent extensive reviews of the general subject have
been provided by Chermette,” Geerlings et al..” and Chattaraj
et al.® Specifically, a perspective for the FF as chemical re-
activity descriptor has been analyzed by Ayers and Levy.7 It
has been recognized, that in principle, if the derivative [Eq.
(1)] exists, it contains all information about the system.
However, Ayers et al® convincingly argued, that such ap-
proach is only justified for molecules in contact with its en-
vironment at some real temperature (e.g., solution). For an
isolated molecule at O K only derivatives “from above” and
“from below” could be considered formally. This conclusion
is very well consistent with the chemical tradition dating
back to the Fukui reactivity indices; the electrophilic FF
f(r)=(dp(r)/dN), and nucleophilic FF f*(r)=(dp(r)/oN)}
have been widely explored, the radical FF f°(r) being the
average thereof.

The variety of studies on FF calculation has been domi-
nated by the finite difference approach. Two circumstances
explain that situation. (i) The first part of the definition of the
FF [Eq. (1)] seems to call for taking a finite difference de-
rivative over N—an integral number. (ii) Connection of the
FF with the frontier molecular orbital theory of reactivity by
K. Fukui pushes the interest to investigation of the electron
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density in real species, rather than to derivatives thereof. In
consequence, while the FF and the Fukui indices (FF con-
densed to atoms,g see also modern exhaustive analysis due to
Ayers et al.""") were extensively investigated, there has
been less interest in studying the FF properties, e.g., its fur-
ther derivatives over N and V(r).5

First DFT computations of the FF based solely on the
electron density of a neutral species were presented by Chat-
taraj et al.,"* who proposed the gradient expansion of the
electron density. An interesting contribution to the analysis
has been added by Fuentealba'® within the local density
model; the author explored the Thomas—Fermi—Dirac model.
Also, Pacios and Gomes'* presented an analysis of the radial
behavior of the FF calculated within the gradient expansion
method and demonstrated the FF calculated with analytically
modeled densities.

Recently, the second part of the definition [Eq. (1)] has
been a target of the fundamental investigations, which opens
a way to study the FF as a physical property, rather than as a
chemical index. Ayers et al."> presented an elaborate
method of explicit calculations of the derivative over a local
electrostatic potential »(r). The authors deduced the FF from
the change in Kohn—Sham orbital energies induced by per-
turbations in molecular external potential and have thus
avoided differentiation with respect to the electron number.
The authors followed the tradition of separate analysis f*(r)
and f(r) functions. They use the chemical potential from
above, u*=-A, and from below, u~=-I, as introduced by
Ayers,17 and not the commonly used value /.L=—%(I+A),18
the average of ionization energy (/) and electron affinity (A)
of a system. The authors note, that their method presented a
“proof of principle” rather than a tool for practical applica-
tions. A simpler, yet formally sound and computationally
convenient approach is proposed in this present paper.

Quantum chemical calculations of FF and the Fukui in-
dices condensed to atoms have been pursued in this labora-
tory very early, both on the semiempirical19 and ab initio
level;20 FF of the Bader AIM atoms’' have also been
obtained.”” The goal of this present study is to relate the FF
to an experimentally controlled property of a system, elec-
tronic dipole polarizability, which could provide an indepen-
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dent control for the quality of FF, before it might be applied
in some chemical prediction.

Il. SOFTNESS AND POLARIZABILITY

Softness of an atom, first introduced as an intuitive con-
cept by R. G. Pearson in his classical hard and soft acids and
bases (HSAB) rule, has been defined formally by Parr and
Pearson™ as the inverse global hardness S=1/, with hard-
ness definition coming from DFT:

n=(PEIIN?),=1-A. (2)

(The original definition of global hardness included a
factor % for the sake of symmetry with the Mulliken elec-
tronegativity. This was later commented to be rather cumber-
some, even by one of the original authors,24 and will not be
followed throughout this work.) A vogue relation between
hardness (softness) and polarizability has been outlined al-
ready by the author of the original concept25 and many ef-
forts were made to discover a relation between the two quan-
tities, as soon as the measure for hardness has been
introduced (for an early review see Ref. 26).

An electrostatic model proposed in this laboratory as a
chemical approximation27 first suggested a relation
1/n=S8=a'? (a stands for the electronic dipole polarizabil-
ity). Theoretical support for that concept has been later pre-
sented by Simon-Manso and Fuentealba;”® additional
quantum-chemical wave function argument has been pro-
vided by Ayers in the framework of his extensive analysis of
the HSAB principle.29 Exploration of that idea allowed for
calculations of hardness/softness’ of bonded atoms from the
data on molar refractions,30 and also for softness’ of bonded
atoms within the framework of AIM.*

Direct connection between the dipolar polarizability and
global softness S of an atom has been first demonstrated
within the rigorous DFT formalism by Vela and Gazquez.31
Their result for the electronic polarizability tensor was

2
@, =— S{(ff(r)rdr) - ff(r)rrdr} . (3)

The authors demonstrated how the rather crude linear rela-
tionship between experimental values of a, and S=(I-A)!
has been substantially improved for a series of atoms, when
the FFs in Eq. (3) (the factor in brackets) has been included
as f(r)=1/2(p~—p*). A crucial point of their method was the
strictly local approximation for the softness kernel s(r,r’) as
defined in the DFT,2

Ip(r)
ov(r')

s(r,r’)=—< ) = Sf(r)8(r-r’). (4)
N
By cross checking their result they noted that in the spherical
symmetry of an atom, approximation in Eq. (4) is compen-
sated within their method of calculation of «,; nevertheless,
their results for polarizability of atoms from Eq. (3) were too
small, only ca. 50% on the average, of the expected values.
Garza and Robles™ followed with further analysis of the
softness kernel concluding that the proper form should rather
contain the weighted local and nonlocal contributions. They
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choose to generalize the local part with respect to Vela and
Gazquez result:

s(r,r’) =k(r’")o(r —r') +t(r)p(r") (5)

and used primitive approximation for the nonlocal part #(r)
=p(r). The authors noted the role of the radial-induced di-
pole moment density in their study, but underlined the com-
pact relation a,=2/Z(r’) as their principal result, leading to
qualitatively good «, for atoms with 4 =Z=236. Subsequent
step of the analysis published by Li and Evans® in 1995
presented another alternative nonlocal approach:

s(r,r’) = aSf(r)S8(r —r') + bSf(r)f(xr")
with a+b=1. (6)

This formula was used in theoretical study of chemical reac-
tivity and stability, providing an additional support to the
HSAB principle.

The valuable result by Vela and Gasquez [Eq. (3)] indi-
cated that dipolar polarizability e, may be decomposed into
some integrable local contributions in which the local soft-
ness, s(r)=Sf(r), hence the FF, plays a central role. Local
contributions to polarizability have long been a subject of
interest. Jameson and Buckingham34 in 1980 proposed an
electric polarizability density as a(r)=p®(r)r where p*(r) is
the first order correction to the charge distribution in the
presence of the uniform electric field €, and a@=[a(r)dr.
Stone™ noted the difficulty in consistently defining a polar-
izability density function and concentrated on the scalar
charge susceptibility a(r,r’) also integrable to polarizability:
a;;=[ra(r,xr')rdrdr’. Bader®' unsuccessfully attempted to
integrate local contributions into the polarizability of atomic
basins. All these efforts present a valuable background to the
analysis of the relation between the local polarization effect
and the FF, which is the leading subject of this present study.

lll. FUKUI FUNCTION FROM POLARIZATION
DENSITY

In order to separate the effect of an external electric field
€ from the nuclear potential v,(r), the classical DFT formu-
lation must be adapted accordingly. First we assume separa-
tion of the nuclear and electronic effects, very well estab-
lished for experimental data on polarizability. Since Sv(r)
=6v,(r)+ Sv,(r), Sv,(r)=0 when the change in a local exter-
nal potential is due to the external field exclusively, assuming
constant nuclear positions R;, and dv(r)=dv,(r). Variation of
the electrostatic potential at position r becomes (see also
Vela and Gazques™') Sv,(r)=r-de where de=¢,i+ syj+ szlE.
The standard DFT electronic energy differential then be-
comes
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dE = udN + f p(r)Sv(r)dr

= udN +de - f p(r)rdr

=udN+M, - de = udN + >, M, de; (i=x,y,2).

()

M,=[rp(r)dr stands for the electronic part of the dipole
moment of the system; the total dipole moment is
M=M, -M,. Maxwell relation corresponding to Eq. (7) pro-
duces an important quantity, MZN)= (M,/ IN) .-, a vector, to
be further explored:

(22) <(2)
9 - - e,i
€i/N IN /e

This derivative is convenient to formulate the complemen-
tary DFT differential and corresponding Maxwell relation:

(i=x,y,2). (8)

du= ndN + E Mg\?dsi, 9
1=X,y,2
d M,
hence (—7]> =(—2“) =M, (10)
dei/n \ IN" /g ’

The change in electron density due to polarization is in the
language of the conceptual DFT:

dp(r) = f(r)dN - a(r) - de, (11)
where by definition, the ith component of the a(r) vector is

ptr)

7o, )N (i=x,y,2). (12)

a(r) =~ (

The new vector derivative a(r) is most essential for this
work; it will be referred to as the local polarization vector.
The Maxwell relation follows

m) __(aai(r)) .
(078,- v IN /.y (i=x.,2). (13)

The dipole polarization tensor e is by classical definition
M=M,+a-&, and thus for the electronic polarization we
have

dM, = - a, - de. (14)

Electronic dipole polarization tensor e, is directly related to
the vector a(r) when the nuclear positions are frozen:

dMez—de-Jra(r)dr:frdp(r)dr (15)

and

a,= f ra(r)dr. (16)

Also, by the definition of the linear response function:
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| 9p(r)
o(r,r’)= [—5v(r')],\,' (17)

Hence, alternatively [Eq. (15)]

dMezfrdp(r)drzfrer [5’)—(r)} ov(r')dr’
Sv(r') |y

=ds~Jfrw(r,r’)r'drdr’ (18)

and

a(r):—f o(r,r)r'dr’. (19)

The local polarization vector a(r) can be readily calculated
by the finite field procedure [Eq. (12)] by numerical deriva-
tion of the results for electron density p(r) in an external
uniform electric field e. Vector a(r) is translationaly invari-
ant and [a(r)dr=0. The product a(r)r has a meaning of
local polarizability as originally proposed by Jameson and
Buckingham.*® It is generally a diade (tensor) and is not
translationaly invariant but gives invariant electron polariz-
ability upon integration [Eq. (16)]. We now aim at producing
a workable link of a(r) to the FF.

The Berkowitz and Parr’® formula provides the relation
between the linear response function w(r,r’) and the soft-
ness kernel s(r,r’):

o(r,r')=-s(r,r') +s(r)f(r'). (20)

By definition of the dipole moment, the derivative MEN) can
be related to the FF:

MgN)=f (ag—g\?)fdr:ff(r)rdr. (21)

Using Eqgs. (20) and (21) in Eq. (19) the concluding result is
a(r) :—s(r)MiN) + f s(r,x’)r'dr’. (22)

This formula requires a resolution for the softness kernel
s(r,r") before it could be applied in practice. The local den-
sity approximation successfully used by Vela and Gazquez31
[Eq. (4)] leads to

a(r) =s(r)[r - MEN)]. (23)

This result in principle allows for calculation the local soft-
ness s(r)=Sf(r) for any electronic system; the MEN) vector is
defined by Eq. (8). The FF in this local approach (LA) be-
comes

(r)- 1
rzfl:/[(’v)r-r<ﬂ>' (24)

Since the FF must integrate to unity, the global softness in
this model is available as

[ =
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ol

This strictly local approach may be modified by using the
nonlocal extension for s(r,r’) as proposed by Li and Evans

[Eq. (6)]:
s(r,r’)=as(r)dr—r') + (1 —a)s(r)f(x'). (26)

a(r)-r

vl (25)

a is an arbitrary parameter, which introduces a balance be-
tween the local and nonlocal contributions to s(r,r’). Using
Eq. (26) in Eq. (22) the result for a(r) is

a(r) = as(r)[r -MWM]. (27)

This leads to identical result for the FF as in Eq. (24). How-
ever, since f(r) must again integrate to 1, we may now look
for the choice of a that warrants that global softness repro-
duces exactly the expected S=1/(I—A). Then a must be

a=S"Y§=S"1I-A). (28)

Considerable progress in this analysis is possible when the
fully nonlocal model is adopted. For the purpose of this work
we note, that a more general solution in Garza and Robles
proposal [Eq. (5)] is #(r)=bp(r) with constant b to be deter-
mined. By combining Eq. (5) with the Li and Evans result
[Eq. (26)] the general a priori formula for the softness kernel
is formulated as:

s(r,r’) =k(r")o(r —r') + bp(r)p(r’) + cSfr)f(r"). (29)

The unknown local function k(r’) need not be calculated
here, as it can be eliminated using the fundamental condition
for the softness kernel:>

f s(r,r")dr’ =s(r). (30)
Hence
k(r) = (1 - ¢)s(r) = bNp(r) (31)

and the basic expression for the softness kernel reads:
s(r,r’)=(1=c¢)s(r)8(r—r') = bNp(r)S(r —r’)
+bp(r)p(r’) + cSfr)f(r'). (32)

Using this in Eq. (22) we obtain the local polarizability func-
tion:

a(r) = (1 - ¢)s(r)[r =MWM] + bp(r)[M, - Nr]. (33)

Parameter b can also be eliminated imposing once again a
condition, that the global softness meets expectation for the
global system S=1/(I-A); integration of local softness s(r)
from Eq. (33) leads to the final result, where for the sake of
clarity, the parameter a is used again [Eq. (28)]:

_1 B
ey e

where
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Nr? -M,r
Y — 35
0= 5y (35)

The final form for the FF in the general nonlocal approxima-
tion becomes

fr)y=d- f*4r) + (1 - d)f(r) (36)

with one single parameter left d=a/1—c. f“A(r) is given by
Egs. (24) and (25) and
_ &G NY()

fo(r) = f5(r) o) ()’ (37)
where f¥S(r)=p(r)/N may be considered to represent the FF
for noninteracting electron gas (EG), thus fully nonlocal. The
combined local and nonlocal contributions to the FF are fully
exposed in Eq. (36). This result represents the FF that war-
rants the expectations values for two important global quan-
tities: electronic polarizability and softness, with one param-
eter d. As demonstrated by Chattaraj et al." in their
fundamental paper, any FF must also conform to the condi-
tion:

f@drEA=—<a—M> . (38)
r 0Z)

If this is used to normalize the FF resulting in Eq. (36), the
single parameter d becomes:
A- AP
d= AR AP (39)

where symbols A" AP are defined accordingly by using

f“A(r) and f*(r) in Eq. (38) (first part). For atoms located at

the origin of the nuclear coordination system M,=0, MEN)
=0, and the result for the FF becomes much simplified:

() = f59(x) p](v), (40)

r)rl

A—AEG

and d=m.

(41)

The working formula for the polarization justified FF of at-
oms becomes attractively simple:

f(r)=d“(2'rUa(rl'rdr} (l—d)p(r). (42)

r

IV. RESULTS
A. Computational methods

The accuracy in reproducing polarizability for atoms has
been used to select the appropriate computational method
and the basis set within the GAUSSIAN 03 code.’’” The best fit
to experimental polarizations of 29 atoms was obtained for
the B3LYP method with aug-cc-pvqz basis set (except for
five atoms for which the Sadlej basis set pVIZ was
adopted48’49), Table I. Calculated as well as experimental
hardness data »=I—A are also given in Table I. Local polar-
izability vector a(r) [Eq. (12)] has been calculated by the
finite field procedure; results were checked by numerical in-
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TABLE I. Calculated electronic dipole polarizability «, and hardness 7 of
selected atoms explored as input parameters; experimental data are also

given.

a, n=I-A
(a.u.) (eV)
Atom Calc. Expt.* Calc. Expt.b
He 1.50 1.38° 27.3127 24.59¢
Li 143.06 164 5.0696 477
Be 4321 37.8 9.1759 8.90
B 22.59 20.4 8.2752 8.02
C 12.72 11.9 10.1637 9.99
N 7.79 7.42 14.4251 14.46
o) 5.46 5.41 12.4604 12.16
F 3.82 3.76 14.2319 14.02
Ne 2.74 2.66 26.6106 21.57¢
Na 143.32 159.3 4.8492 4.59
Mg 72.08 71.5 7.8017 7.80
Al 64.30 56.3 5.5594 5.53
Si 40.72 36.3 6.7703 6.76
p 27.00 24.5 9.4262 9.75
S 20.51 19.8 8.3514 8.28
Cl 15.27 14.7 9.3936 9.35
Ar 11.55 11.09 18.3572 15.76°
K* 276.62 293 3.9784 3.84
Ca 153.31 168 6.1064 7.90
Ga 60.51 54.8 5.5893 5.70
Ge 4401 41 6.5635 6.70
As 32.46 29.1 8.8521 9.00
Se 27.05 254 7.6439 7.73
Br 21.70 20.6 8.4031 8.45
Kr 17.52 16.8 16.1041 14.00°
Rb® 325.68 319 3.7716 3.69
Sr° 196.61 186 5.6193 7.40
I 33.96 33 7.2547 7.39

“Reference 45.
PReference 46.
“Reference 47.
dAssumed A=0 in (I-A)
“Reference 48.
"Reference 49.

exp*

tegration of a(r)-r to the electronic dipole polarizability of
atom [Eq. (16)] leading to exact reproduction of the B3LYP
calculated values. The derivative A has been calculated from
the chemical potential of neutral atom and its ions in the
finite difference approximation [Eq. (38), second part]. The
value was proved to be identical within the numerical accu-
racy to the integral:

A=_((3’_,LL> =fMdr' (43)
N

4 2r

AN AEC have been calculated by numerical integration of
f(r)"A/r and f(r)ES/r functions accordingly, from Eq. (38)
(first part).

B. The hydrogen atom

The hydrogen atom electron field dependent analytical
orbital functions™® allow for testing the result:

J. Chem. Phys. 131, 124120 (2009)
06
A —
B mm—
C -
B
\\
NN
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\ 5
N e
N EC
\\\\ Sy 3
2 3 4 5
r

FIG. 1. Radial FF for the hydrogen atom from this work and by other
authors (in atomic units). (a) f(r)=p(r)/N; (b) f“*(r) [Eq. (48)], this work;
(c) f(r) by Garza and Robles (Ref. 32); (d) f(r) by Fuentealba (Ref. 13).

1 1
O, = —=exp(- r)[l—s<r+—r2)cos 68,]. (44)
1 \’/7—T P B
Corresponding local polarization is in the direction r:
dp(r 2 1
a(r)=— <_p( )> = —exp(— 2r)<r + —r2> . (45)
de, /|y m 2
The local softness, according to Eq. (23) is:
2 1
s(r)=—exp(=2r)|{ 1 +=r|. (46)
T 2

The global softness obtained by integration is [Eq. (25)]:
(47)

+o0 7
StA = 4’7Tf s(Nriddr== a.u.
0 2

The Li and Evans parameter for hydrogen atom can be cal-
culated from Eq. (28):

7
a=(1-A)=1.6885.

Derivative A=—(du/dZ)y could not be determined for hy-
drogen in the procedure used for other atoms and the only
nontrivial result for the FF of hydrogen atoms is the one in
the local approximation:
A 4 1
A == 1+ =r Jexp(=2r). (48)
ki 2

The radial function 47r2f“A(r) for a hydrogen atom shown

in Fig. 1 compares favorably with the results by other au-
thors.

C. Results for other atoms

An example of the result for local polarization is given
in Fig. 2 for halogen atoms.

Radial FF for three example atoms are given in Fig. 3 as
compared to the widely used FF by common definitions. Po-
larization justified FF resulting from this work shows nega-
tive regions, which is not unexpected (cf. Ref. 10). The ac-
curacy of calculation may not be equal for atoms and may be
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FIG. 2. The radial values of local electronic dipolar polarizability as calcu-
lated for the halogen atoms (atomic units).

readily checked by comparing the global polarizabilities to
expected experimental results (Table I); it is good for N, F,
poor for Li.

The suitable test for the resulting atomic FF is by calcu-
lation of the global hardness, well established experimental
quantity /—A. This will be done as to expose the role of the
FF derivative f'(r)=(df(r)/dN), (), implicit in this approach.
Standard expressions for the potential energy V[p] and elec-
tronic coulomb term J[p] are:

VIpl=Jv(r)p(r)dr=-Z[p(r)/|r|dr and
Jlp]= %ffp(l’)p(r’)/|r —r'|drdr’;

K[p] contains a sum of the exchange and correlation interac-
tions. Using the virial theorem, the unknown and large ki-
netic energy term 7{p] can be eliminated:

FIG. 3. The radial FF for Li, N, and F atoms (atomic units). (a) This work
[Eq. (42)]; (b) f55(r)=p(n)/N; (¢) £ (1) =1/2[p~(r)=p*()].

J. Chem. Phys. 131, 124120 (2009)

E[p]=VIp]+Tp]+Jlp]+ K[p]
=1/2(Vlp] +J[p] + Klp)).

First derivatives of the energy terms V[p] and J[p] are sim-
ply:

(%% f o(0)f(r)dr.,

aJlp] .| fr)p(x’)  f(x")p(r)
( ) ” "[|-r| |r—r|}

([

Using /7 (r)=(#p(r)/ dN?), )

the second derivatives are

FVip] Fp(r) o,
77v=( aNf )=fv(r)( o"ll)\’; )dr:—Z |T
&l
(8 )= [ [ e
ffpﬁ:)fr(r') dr' (50)
The global hardness takes the form:
f f(r)f(r’) ff pOf ()
2 r—r’ r—r |
-z f|(|r)d 321(} (51)
Substituting

[ e J{ [ [ 5 v

f ﬁ
|r| TN |
The relation between the /—A quantity and integrated hard-
ness kernel is then expected as:

_I_A_<ﬂ)J fmf(x’)
o W

r—r|
The test for Eq. (52) is shown in Fig. 4. The linear relation is
indeed found for the group of 29 atoms in the consideration,
a single notable exceptions being the noble gases. The value
of resulting constant P=1.2162 contains an indirect hint to
the to the value of the derivative f’(r). Standard deviation
between the two sets of data, as given by r2=0.8957, is re-
markable, comparing to the study by Liu et al.,”® where the
results for a selection of 20 main group elements is reported
(the authors arbitrarily excluded groups ITA, VA, and noble
gases). The small value of constant R=—1.1422 eV com-
pares favorably with the one reported by Liu et al®
(—1.397 66 €V), in their linear correlation between the ex-
perimental hardness and integrated hardness kernel (modi-

drdr’ +R. (52)
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FIG. 4. Correlation between the global hardness /—A resulting from B3LYP
calculations and the integrated hardness kernel [Eq. 60]: (I-A)=1.1081-7
—1.1422 [eV]; r*=0.8957 (excluding group 8: He, Ne, Ar, and Kr).

fied model). The linear correlation becomes exact when it is
studied within the main groups I-VIIA, i.e., for equal number
of valence electrons, then for each group 2=0,99. In such
case, however, P and R constants vary between main groups
of the periodic table, with the extreme values for group IA:
P;=0.1116, R;=1.3142 eV and group VIA: Py;=1.6838,
Ry;=-3.2652 eV.

V. DISCUSSION

FFs resulting from this work are polarization justified in
the sense that they reproduce accurately both the global soft-
ness and the electronic dipole polarizability of the system.
The polarization justified FF also reproduce properly the
(du! 9Z)y derivative given by Eq. (38) [this is automatically
true for f,,_ (see Sec. IV A) but does not hold for p(r)/N]. It
is remarkable to see that only one experimental parameter d
is sufficient to warrant these properties of the polarization
justified FF. Moreover, in most cases studied, parameter d is
close to 1.0 (Table II). This indicates that the sole LA is
reasonably good for most atoms (exceptions: He, N, O, F,
Ne, and Ar). Other experimental parameters listed in Table IT
corroborate this conclusion; parameter b [Egs. (31), (32), and
(34)] is very close to O for all atoms but H, He, Li, and Be.
Parameters of the linear correlation as given in Fig. 4 ob-
tained with the f“* FFs [Eq. (24)] are very close to the result
in Fig. 4:

(I-A)=1.0529- »-0.8218 [eV], r2=0.8951.

Special position of noble gases can be attributed to the
ambiguity concerning their calculated and experimental
hardness (I—A) as indicated in Table I, the source of ambi-
guity is in large and negative values of their electron affinity,
as compared to A=0 assumed for experimental data.

The proposed FF offers a unique opportunity to study the
role of derivative f'(r)=(df(r)/dN),y) in the conceptual
DFT. It has recently attracted some attention; Morell et
al.***" introduced it as an intuitive dual descriptor for chemi-
cal reactivity; Ayers et al.**® presented formal definition and
interesting applications thereof. f’(r) appears naturally in
calculation of the global hardness as the derivative of the
chemical potential:
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TABLE II. Calculated derivative A=—(du/dZ)y and dimensionless param-
eters a,c,d explored in calculations of the polarization justified FFs.

A
Atom (a.w.) [Eq. 38)] a[Eq. (28)] ¢ [Eq. (33)] d[Eq. (46)]
He 0.8199 2.324 —0.087 2.138
Li 0.2614 4.717 —4.000 0.943
Be 0.3050 4.730 —3.903 0.965
B 0.3243 2.654 —1.615 1.015
C 0.4593 2.310 —1.282 1.012
N 0.4932 2.485 —1.332 1.066
(6] 0.5477 1.546 —-0.320 1.172
F 0.5113 1.272 0.053 1.343
Ne 0.5670 1.794 —0.165 1.539
Na 0.2363 4.069 —2.997 1.018
Mg 0.2300 4.783 —3.609 1.038
Al 0.2203 2.409 —1.334 1.032
Si 0.3291 2.298 —1.284 1.006
P 0.3399 2.637 —1.560 1.030
S 0.3740 1.933 —0.892 1.022
Cl 0.3431 1.883 —0.801 1.045
Ar 0.3752 3.193 —1.885 1.107
K 0.1876 3.820 —2.747 1.019
Ca 0.1840 4.623 —3.516 1.024
Ga 0.2206 2.193 —1.133 1.028
Ge 0.3141 2.185 —1.185 1.000
As 0.3160 2.570 —1.554 1.006
Se 0.3399 1.974 —1.025 0.975
Br 0.3029 1.981 —0.975 1.003
Kr 0.3248 3.426 —2.401 1.007
Rb 0.1764 3.644 —2.554 1.025
Sr 0.1644 4418 —3.285 1.031
1 0.3219 2.139 —1.242 0.954
u=(ﬁ) =fdrf(r)[v(r)+(5ﬁp]>
N/, Sp(r) /,
pr) (aK[p]) ]
dr’ +
|l’ - l',| 5p(r) v
= f drf(r)u(r). (53)

The sum in brackets equal w(r) is identical to the chemical
potential p and constant everywhere for exact functionals
T p],K[p] and the exact density p(r) [hence also for appro-
priate f(r)]. Using arbitrarily calculated f(r) [and the density
p(r)] this should not be assumed a priori, and then the global
hardness comes out as the derivative containing f”(r):

0,
”=<%) - f drf(f)(%); f drf'(r)p(r). (54)

v
When the relation given by Torrent-Sucarrat et al.* is used
in integration of the first term,

( S{1lpl+ K[p]}> _ ( {1lp] + Klpl}

5p(r)3p(r") Py )U‘S("“")’

(55)

the resulting equation is an alternative to Eq. (51):
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&+ K
nzfder(r)<W>v

fff( nfr ,)d dr’ fdrf’(r),u,(r). (56)

The first term contains hidden dependence on p(r) and its
derivatives while the last term is expected to be zero. Equa-
tion (51) is still better since all but K[p] dependence is ex-
posed and contribution to global hardness introduced by
(PK[p]/N?), may be small, as demonstrated by Torrent-
Sucarrat er al.* However, Eq. (56) is interesting when the
demonstrated linear correlation between #n=[-A and
JIf@)f(x’)/[r=r'|drdr’ is recalled (Fig. 4). Apparently,
with the proposed polarization justified FFs and the B3LYP
densities explored, the last term is constant and reasonably
close to 0 for atoms under study, as compared to the average
global hardness in this group of atoms, 10.03 eV (calcu-
lated),

fdrf’(r),u,(r):R:— 1.1422 eV.

Also, the first term is rather small, as indicated by the coef-
ficient of the linear dependence in Fig. 4:

[ o 2T

=0,1081 - fff(r)f(r,) . (57)

If these results are combined with satisfactory value of r?
=0.8957 for the linear correlation, it is clear that the polar-
ization justified FFs for atoms very reasonably meet the ex-
pected general relation between the hardness kernel and the
global hardness:

_ f JSOfr’)
n=

drdr’ . (58)
e

The two classical approximations for the FFs have also been
tested in the same way, looking for the correlation
between (/-A) and the integrated hardness Kkernel
[Eq. (58)]. The result was discouragingly poor for
p(r)/N (no correlation); it was quite reasonable for
fo: (I-A)=1.0411-9+1.1837 [eV]; r*=0.7968 (groups
1-7 as in Fig. 4). Both approximations allow also for rough
estimate of the role of the derivative f’(r) in Eq. (56). For
p(r)/N approximation, f'=0 and the last term in Eq. (56) is
identically zero. For the f,,_ approximation corresponding
derivative may be found by taking the Taylor expansion to
the second order for the density:

1
p(N)=p,+ p'(N)AN + Ep”(N)AN2 +
1
=p,+ fAN + Ef’AN2 +

The density derivatives are:

J. Chem. Phys. 131, 124120 (2009)

1
f= E(p—_ P+) =fu->0,

fr=(p_+p=2p,) =11

Using f;,_ in calculation of the last term in Eq. (56) gives
rather poor result: 0.35%£1.96 eV for the group of atoms
under study.

If Eq. (56) is consequently applied within the above two
widely used approximations, and if the Thomas—Fermi
model is applied to determine the derivative &{T]p]
+K[p]}/ dp?, the correlation found between (/—A) and the
integrated hardness kernel [Eq. (56)] was significantly dete-
riorated for f,,_ and not improved for p(r)/N. Using the
same scheme with the polarization justified FFs still gives
reasonable linear correlation, with lower 72 [0.72 for f(r) and
0.78 for f“A(r)]. Apparently, Thomas—Fermi model is not
suitable to combine with the polarization justified FFs. In
fact, they alone provide better accuracy in calculating the
global hardness of atoms then any other FFs proposed from a
priori calculations.

VI. CONCLUSION

Formal analysis of the FFs presented in this work ex-
plored two separate regions of modern molecular chemical
physics. The conceptual DFT, where the very notion of the
FF stems from, offers still growing understanding how the
molecular properties could possibly be quantified to describe
their “chemistry”—structural changes occurring at short dis-
tances. Conceptual DFT is becoming an important branch of
theoretical chemistry that aims at understanding the molecu-
lar properties and interactions, as opposed to computational
chemistry (where the DFT methods themselves are much
valuable) providing numerical results sometimes difficult to
generalize. The second field involved is the rich body of
molecular physics inasmuch as it describes the molecular
polarization. There is a vast space to explore here, as inter-
action of molecules with external fields have recently gained
much interest with the nonlinear effects in laser beams being
extensively explored. The first step on this way made by this
present work is promising: FFs have been linked to the local
polarization of the electron density, resulting in FF that are
superior to many others, as was demonstrated in calculation
of the global hardness. Moreover, an internal test for the
quality of results has been indicated at computational level:
the method (and the basis set) must correctly reproduce the
molecular polarizability in routine calculations first.

Polarization justified FF introduced in this work are con-
veniently calculated for atoms by the routine quantum
chemical tools; extension to molecules does not present com-
putational problems. Properties of this FFs make them a
promising target in further studies on molecular reactivity.
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