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Atomic Fukui function indices and local softness ab initio
Robert Balawender and Ludwik Komorowskia)

Institute of Physical and Theoretical Chemistry, Wrocław University of Technology,
Wyb. Wyspian´skiego 27, PL-50-370 Wrocław, Poland

~Received 22 December 1997; accepted 1 July 1998!

The complete and original calculation scheme beyond the finite difference approximation, for the
atomic~and orbital! Fukui function~FF! indices is proposed. The method explores an expansion for
derivatives of LCAO coefficients,]C/]N5CU. The separation scheme for theU matrix has been
elaborated at theab initio level. Nucleophilic and electrophilic FF indices, as well as atomic
softness, have been derived from the standard result of SCF HFab initio calculations. The indices
reproduce two effects; the change in orbital occupancy and the relaxation of the electronic system.
The molecular hardness~softness! provided by this scheme explicitly includes these two effects.
© 1998 American Institute of Physics.@S0021-9606~98!02737-8#

I. INTRODUCTION

Density functional theory~DFT! has offered formal jus-
tification of purely experimental description of the behavior
of electrons in molecules,1 as developed by chemists within
the framework of the electronegativity concept. Based on
theorems by Hohenberg and Kohn2 this theory focuses on the
electron density functionr~r !, the fundamental quantity for a
many-electron system, containing all information on atomic
and molecular ground-state properties. This theory provided
solid support for traditional chemical ideas of
electronegativity3 and hardness,4 and also introduced new
descriptors such as hardness and softness kernels,5 global
and local softness,6 Fukui function.7 The Fukui function, as
proposed by Parr and Yang, is related to the Fukui’s concept
of frontier molecular orbitals~FMO!. The Fukui method pre-
dicts the site of electrophilic reaction in a molecule to be
where the relative density of the HOMO is high and the
position of nucleophilic reaction to be where the relative
density of the LUMO is high.8 Even if widely used, the
method can hardly be justified as a general tool, as if fre-
quently leads to false conclusions, e.g., in the famous coun-
terexample, pyridine. Li and Evans have recently suggested
that the FMO description can be incorporated into the more
general DFT principle; the hard and soft acids and bases.9

A number of elaborate methods for local~atomic! de-
scription of molecular properties have been proposed within
the DFT. The most common atomic index remains the
atomic charge. New methods for calculation of atomic
charges on the ground of electronegativity equalization have
been proposed by Gasteiger and Marsili,10 and by Mortier;11

the later scheme has been further developed by Geerlings
and co-workers.12 Several attempts have been directed to ob-
tain Fukui function ~FF! indices numerically. Yang and
Mortier proposed condensed FF indices by the crude finite
difference approximation based on atomic charges.13 Nale-
wajski introduced atom-in-molecule~AIM ! FF indices in an
original, normal representation.14 Komorowski et al. calcu-

lated atomic and group FF indices~and hardness! by the
semiempirical method.15,16 Balawenderet al. introduced a
similar scheme at theab initio level.17 Liu and Parr proposed
calculation of molecular hardness, softness, and Fukui indi-
ces by SCF calculations, however, the finite-difference ap-
proximation has been used throughout their work.18 The
most profound, variational method for determining FF indi-
ces and chemical hardness proposed by Chattarajet al. has
not yet been developed into a workable calculation scheme.19

In this paper, a strictly nonfinite difference approxima-
tion is proposed for the energy and density derivatives with
respect to the number of electrons within the Hartree–Fock
SCF method. The LCAO MO scheme with integral occupa-
tions of molecular orbitals~MO! for the closed shell systems
has been chosen as the most general model available to
chemists, both on the operational and conceptual level. This
present analysis is suitable for understanding effects directly
included in the approach~relaxation!, which could not be
reproduced by finite-difference approximations. The pro-
posed method is readily applicable to any calculation tech-
nique based on LCAO. Electronegativity equalization has
been demonstrated as a natural property of this approxima-
tion.

II. LOCAL DESCRIPTORS IN THE DENSITY
FUNCTIONAL THEORY OF CHEMICAL REACTIVITY

The electronegativityx of an N-electron system in its
ground state, is defined in terms of the chemical potentialm,
as3

x52m52S ]E

]ND
v~r !

, ~1!

whereE is the total electronic energy andv(r ) is the external
potential. The Mulliken formula20 x5 1

2(I 1A), where I is
the ionization energy andA is the electron affinity, is just the
finite-difference approximation for Eq.~1!. Similarly, the
global hardness is defined by4a!Author to whom correspondence should be addressed.
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h5
1

2 S ]2E

]N2D
v~r !

5
1

2 S ]m

]ND
v~r !

. ~2!

The 1/2 factor has been conventionally introduced into the
definition of hardness for symmetry reasons, and leads toh
5 1

2(I 2A) in the finite-difference approximation.1 In conse-
quence, a routinely used definition of global softness is

S5S ]N

]m D
v~r !

5
1

2h
. ~3!

The first functional derivative ofE with respect to the
local electron densityr(r ) is formally the local value of the
chemical potential ~negative of the local
electronegativity!1,3,21

m~r !5S dE

dr~r ! D
v~r !

52x~r !. ~4!

In a global equilibrium state the electronegativity~chemical
potential! is equalized throughout the whole system. This
follows from the property of the Lagrangian multiplier, in
accordance with the intuitive principle of Sanderson,21,22

m(r )5const.
The functional derivative of the chemical potentialm

with respect to the density is the local hardness23

h~r !5
1

2 S dm

dr~r ! D
v~r !

. ~5!

The local hardnessh(r ) proved to be ill-defined; it may be
arbitrarily set as equal to global hardnessh, constant for any
point in the system in the global equilibrium state.23 No local
information about the system is available from electronega-
tivity or hardness.

The truly local density functional quantity is the Fukui
function7

f ~r !5S ]r~r !

]N D
v~r !

. ~6!

The Fukui function indicates how the incoming or out-
going number of electrons is redistributed in regions of the
molecule, hence it is of primary importance for a chemist.
For the finite system, the derivative in Eq.~6! ~and all de-
rivatives with respect to the number of electrons! is discon-
tinuous. Parr and Yang have proposed to associatef (r ) with
reactivity indices.7 In nucleophilic attack~the increasing
number of electrons!

f 1~r !5S ]r~r !

]N D
v~r !

1

, ~7!

and in an electrophilic attack~decreasing number of elec-
trons!,

f 2~r !5S ]r~r !

]N D
v~r !

2

, ~8!

where the superscripts~1/2! refer to right and left deriva-
tives, respectively. For neutral reagents~a radical or species
of similar electronegativity! the Fukui function has been pro-
posed as the average of those two derivatives,

f 0~r !5 1
2@ f 1~r !1 f 2~r !#. ~9!

In the finite difference approachf 1(r ) and f 2(r ) reduce to
the original Fukui indices7,24

f 1~r !'rN11~r !2rN~r !'rLUMO~r !, ~10!

f 2~r !'rN~r !2rN21~r !'rHOMO~r !, ~11!

whererN , rN11 , andrN21 are electron density functions of
N, N11, and N21 electron systems, respectively, at the
same geometry. Thef 0(r ) is then

f 0~r !' 1
2@rN11~r !2rN21~r !#

' 1
2@rLUMO~r !2rHOMO~r !#. ~12!

A condensed version of Eqs.~7!–~9! has been proposed by
Yang and Mortier. Integration of the information contained
in f (r ) in the neighborhood of a given atomA may be ap-
proximated by using the gross atomic chargeqA available
from a Mulliken population analysis.25 The condensed Fukui
function index on the atomA is13

f A
15qA~N11!2qA~N!, ~13!

f A
25qA~N!2qA~N21!, ~14!

f A
05 1

2@qA~N11!2qA~N21!#. ~15!

An alternative approximation of the Fukui function, entirely
neglecting the discontinuity of the derivative atN has been
used by Nalewajski,14

f ~r !5
r~r !

N
. ~16!

The Fukui function is normalized to unity. Using Janak’s
formulation26 of the Kohn–Sham theory,27 Yang et al.7,28

have expressedf (r ) in terms of Kohn–Sham orbitals,f(r ).
Here the electron coordinatex is comprised of a space coor-
dinate r and a spin coordinates,x5(r ,s). Yang et al. ob-
tained relations

f 1~r !5(
s

H ufN11~x!u21(
i 51

N F]uf i~x!u2

]N G
v~r !

1 J ~17!

and

f 2~r !5(
s

H ufN~x!u21 (
i 51

N21 F]uf i~x!u2

]N G
v~r !

2 J . ~18!

Another local quantity, potentially characterizing a1site in a
molecule, is the local softness5,6

sa~r !5F]r~r !

]m G
v~r !

a

5F]r~r !

]N G
v~r !

a F]N

]mG
v~r !

a

5 f a~r !Sa,

~19!

where the superscripta5(1/2) indicates the one-sided de-
rivative. The local softnesss integrates to the global softness
S, and appears as the key local descriptor at the DFT level.
The Fukui function is now the normalized softness.
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III. ­/­N DERIVATIVES IN THE LCAO MO
APPROXIMATION

For a closed-shell, single-determinant, self-consistent-
field ~SCF! wave function in the typical LCAO MO
approach,29 the electronic energy is minimized with respect
to variations of molecular orbital coefficientsC under the
constraint of orthonormality,

CTSC51. ~20!

S is the overlap matrix in the atomic orbital~AO! basis for
the fixed external potential~i.e., the ‘‘frozen’’ nuclear posi-
tions!. In the restricted Hartree–Fock~RHF! theory, the elec-
tronic energy for a single configuration closed-shell SCF
wave function is

E5tr n~H1 1
2G!, ~21!

whereH stands for one-electron integrals matrix~kinetic and
electron–nuclei attraction energies! and G is the-two elec-
tron integrals matrix in the molecular orbital~MO! basis.
The elements of diagonal matrixn contain MO occupations
~2 for occupied MO and 0 for virtual MO!. In RHF theory,
the Fock operator for a single-configuration closed-shell SCF
wave function is

F5H1G. ~22!

The SCF energy is invariant to a unitary transformation
within the occupied space and the diagonal Fock matrix~e!
defines the canonical molecular orbitals,30

Fi j 5d i j ei , ~23!

whereei are orbital energies.
The derivative of themth coefficient of thei th MO with

respect to the number of electrons may be expanded in the
basis of unchanged MOs. Similar procedures have been suc-
cessfully used for the derivatives over the geometrical
coordinates,30 and time,31

S ]cm i

]N D
v~r !

5(
m

MO

cmmUmi or S ]C

]ND
v~r !

5CU. ~24!

For simplicity, the superscripts~1/2! are not shown, how-
ever, the derivative with respect toN is discontinuous.
Hence, Eq.~24! must be written separately for~1! and ~2!
derivatives, and in fact defines two new matrices to be found,
U1 andU2. Taking the derivative (]/]N) of the orthonor-
mality condition of the molecular orbitals@Eq. ~20!# reveals
that theU matrix is antisymmetric; this important property
will be extensively explored throughout this work,

UT1U50. ~25!

When the external potential is fixed~frozen nuclear po-
sitions! both one- and two-electron integrals of AOs are un-
changed. The derivative of theH matrix becomes

S ]H

]ND
v~r !

5HU2UH. ~26!

The two-electron MO integrals (i j ukl) for MO, are by
definition,

~ i j ukl !5 (
mnrs

AO

cm icn j crkcs l~mnurs!. ~27!

The derivative can be expanded into a sum,

S ]~ i j ukl !

]N D
v~r !

5(
m

MO

$Umi~m jukl !1Um j~ imukl !

1Umk~ i j uml!1Uml~ i j ukm!%. ~28!

For theG matrix, differentiation with respect to the number
of electrons gives

S ]G

]ND
v~r !

5GU2UG1Gf1GU. ~29!

The elements ofGf andGU matrices are

Gi j
f 5(

l

MO S ]nl

]N D
v~r !

H ~ i j u l l !2
1

2
~ i l u j l !J

5(
l

MO

f l H ~ i j u l l !2
1

2
~ i l u j l !J , ~30!

Gi j
U5(

l

MO

(
m

MO

~Umlnl2nmUml!$~ i j u lm!2 1
2~ imu j l !%.

~31!

The analysis of the MO indexf l will follow in Sec. IV.
Using Eqs.~22!, ~26!, ~29! for the F matrix one gets

S ]F

]ND
v~r !

5FU2UF1Gf1GU. ~32!

IV. THE FUKUI FUNCTION INDICES

The probabilitys im of occupying themth AO in i th MO
is defined,

s im5cim(
n

AO

cinSmn . ~33!

The Mulliken population ofmth AO is25

nm5(
l

MO

nis im . ~34!

The summation over the AOs centered on nucleus A leads to
the representation of this atom in the molecule. The atomic
population,

nA5 (
mPA

AO

nm5 (
mPA

AO

(
i

MO

nis im . ~35!

Before proceeding to the AO Fukui function indices it is
useful to find derivative expressions for the density matrix.
The density matrix takes the form

P5CnCT, ~36!

and its derivative,

5205J. Chem. Phys., Vol. 109, No. 13, 1 October 1998 R. Balawender and L. Komorowski



S ]P

]ND
v~r !

5CS ]n

]ND
v~r !

CT1S ]C

]ND
v~r !

nCT

1CnS ]CT

]N D
v~r !

. ~37!

Equations~24!, ~25! are now used to yield

S ]P

]ND
v~r !

5CfCT1C~Un2nU!CT, ~38!

where f5]n/]N is the diagonal matrix of MO Fukui func-
tion indices. The integral population of molecular orbitals
requires that Fukui function indices for MOs simply be

f i
15S ]ni

]N D
v~r !

1

5 H0, iÞLUMO
1, i 5LUMO,

~39!

f i
25S ]ni

]N D
v~r !

2

5 H0, iÞHOMO
1, i 5HOMO.

The derivative of the population of themth AO @Eq. ~34!#
with respect toN can now be written as

S ]nm

]N D
v~r !

5S ]~PS!mm

]N D
v~r !

5~CfCTS!mm1~C~Un2nU!CTS!mm . ~40!

The diagonal elements ofPSmatrix are simply the Mulliken
populations andS is constant for the frozen geometry and the
basis set. Using the antisymmetric property of theU matrix,
the AO FF index,

f m5S ]nm

]N D
v~r !

5(
i

f is im1(
i

ni S ]s im

]N D
v~r !

5 f 1,m1 f 2,m . ~41!

Summing over the AOs centered on nucleus A, and consid-
ering one side derivatives,a5(1/2), the following is ob-
tained for the atomic FF index:

S ]nA

]N D
v~r !

a

5 f 1,A
a 1 f 2,A

a , ~42!

where

f 1,A
a 5 (

mPA

AO

(
n

AO

cFMOmcFMOnSmn ,

and

f 2,A
a 52(

k

vir

(
i

occ

Uki
a (

mPA

AO

(
n

AO

~ckmcin1cimckn!Smn .

f 1,A accounts for the effect of changing MO occupations; its
form is identical to the previously described.15,17The second
term f 2,A represents the MO relaxation contribution for the
frozen MO occupations; it is an original result of this work.
Quite interestingly, the contributions from the occupied–
occupied and virtual–virtual orbital interactions vanish due
to the antisymmetric property of theU matrix.

V. THE DERIVATIVES OF THE ELECTRONIC ENERGY

From the definition of the electronegativityx for an N-
electron system in its ground state we have@Eqs.~26!, ~32!#,

S ]E

]ND
v~r !

5S ]

]N
tr

1

2
n~H1F! D

v~r !

5tr
1

2
f~H1F!1tr

1

2
n@~H1F!U2U~H1F!#

1tr
1

2
n~Gf1GU!. ~43!

From the detailed form ofG, Gf , and GU matrices@Eqs.
~27!–~31!# the following identity may be demonstrated:

tr 1
2n~Gf1GU!5tr 1

2~ f1U•n2n•U!G. ~44!

Applying Eq. ~44! and Eq.~22! in Eq. ~43! leads to

S ]E

]ND
v~r !

5tr fF1tr U~n–F2F–n!. ~45!

The Fock matrix commutes with then matrix, and the sec-
ond term vanishes identically. For canonical orbitals@Eq.
~23!#, the global electronegativityx becomes

x52S ]E

]ND
v~r !

52tr f–e5 H x152eLUMO

x252eHOMO
. ~46!

The electronegativity of theX fragment can now be analyzed
in the same fashion. IfnX is the electron population of the
fragment andnR5N2nX the population of the rest of the
molecule, a consistent definition for the electronegativity of
the fragmentX is

xX52S ]E

]nX
D

v~r !,nR

. ~47!

Using Eqs.~26!–~32! and ~45! for the derivatives written
with respect to the population of theX molecular fragment
yields ~the UX matrix for the fragment must be used instead
of the globalU matrix!

S ]E

]nX
D

v~r !,nR

5trS ]n

]nX
D

v~r !,nR

e. ~48!

Due to the extreme MO occupation in the HF approximation,
we have

S ]n

]nX
D

v~r !,nR

5S ]n

]ND
v~r !

5f. ~49!

Hence, the principle of electronegativity equalization holds
for any chosen fragmentX,

X̂xX52S ]E

]nX
D

v~r !,nR

52S ]E

]ND
v~r !

52tr f–e5x. ~50!

The analysis of hardness must start with the global hardness
h @Eq. ~2!#. Using Eqs.~26!–~32!, ~44!, and~45!, the follow-
ing expression results:

h5 1
2trS ]f

]ND
v~r !

e1
1

2
tr~ f1U–n2n–U!Gf . ~51!
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Using the approximation proposed for the molecular FF in-
dex f l @Eq. ~39!#, Gf matrix elements introduced by Eq.~30!
is reduced to

Gi j
f 5~ i , j uFMO,FMO!2 1

2~ i ,FMOu j ,FMO!. ~52!

The detailed form of the final expression for the global hard-
nessh depends on the approximation applied to the deriva-
tive ] f /]N. The choice] f MO /]N50, though not unique, is
consistent with the argument given in Eq.~39! for integral
occupancies of molecular orbitals. This leads to the global
hardness for the molecule as seen in the nucleophilic
~a5$1%, FMO5LUMO! and electrophilic attack
~a5$2%, FMO-HOMO!,

ha5 1
4JFMO1(

i

vir

(
j

occ

Ui j
a @2~ i , j uFMO,FMO!

2~ i ,FMOu j ,FMO!#,

where

JFMO5~FMO,FMOuFMO,FMO!. ~53!

The global softnessSa can be obtained directly from its defi-
nition, Eq. ~3!.

VI. THE U MATRIX SEPARATION SCHEME

The differentiation of the variational condition for the
RHF close-shell SCF@Eq. ~23!# with respect to a number of
electrons for the fixed external potential leads, for any pair of
canonical orbitalsi,j ,

S ]Fi j

]N D
v~r !

5d i j ei8 . ~54!

Due to the antisymmetric property of theU matrix, its diag-
onal elements vanish identically,Uii 50 and the situationi
5 j will not concern us any further. Rewriting Eq.~32! for
iÞ j we have

(
k

~UkiFk j1Uk jFik!1 1
2(

kl
Uklnl@4~ i j ukl !2~ iku j l !

2~ i l u jk !#1(
l

f l@~ i j u l l !2 1
2~ i l u j l !#50. ~55!

To abbreviate the notation, a symmetrict matrix will be
defined by its elements

t i jkl 54~ i j ukl !2@~ iku j l !1~ i l u jk !#. ~56!

Considering the diagonal nature of theF matrix @Eq. ~23!#
and the antisymmetry of theU matrix reduces Eq.~55! to

Ui j ~ej2ei !2 1
2(

kl
Uklnlt i jkl 5(

l
f l@~ i j u l l !2 1

2~ i l u j l !#.

~57!

The second term in the left-hand side of Eq.~57! may be
further manipulated in the following way. Using the antisym-
metric property of theU matrix and orbital populationsni

equal 2 and 0 for the occupied and virtual orbitals, gives

(
kl

Uklnlt i jkl 5(
k. l

Uklnlt i jkl 1(
k. l

Ulknkt i jkl

5(
k. l

Uklnlt i jkl 2(
k. l

Uklnkt i jkl

5(
k. l

Ukl~nl2nk!t i jkl

52(
k

vir

(
l

occ

Uklt i jkl . ~58!

Hence,

Ui j ~ej2ei !2(
k

vir

(
l

occ

Uklt i jkl 5(
l

f l@~ i j u l l !2 1
2~ i l u j l !#.

~59!

Introducing thef l as given by Eq.~39! one finally gets

Ui j
a~ej2ei !2(

k

vir

(
l

occ

Ukl
a t i jkl

5~ i j uFMO,FMO!2 1
2~ i ,FMOu j ,FMO!. ~60!

The set of such equations potentially allows calculation of
the nondiagonal elements of theU matrix. However, the pro-
cedure must proceed in two steps, separately for the two
bodies of MO pairsi,j . When i is an occupied MO andj is
virtual MO ~or symmetrically!, the pair will be labeled inde-
pendent. Otherwise thei,j pair is nonindependent. Wheni,j
are independent pairs of MOs, the sum over virtual and oc-
cupied MOs~kl! contains exactly one term identical toUi j .
Hence, the set of such equations for allij being the indepen-
dent pairs is directly solvable forUi j . The elements of theU
matrix for the independent pairs are sufficient for the calcu-
lation of the FF indices@Eq. ~42!# and the global hardness
@Eq. ~53!#. Nevertheless, theUi j

a elements for the remaining
nonindependent pairs of MOs may also be found subse-
quently from Eq.~60!, once the sum(k

vir( l
occUkl

a t i jkl for the
independent pairs is known.

When molecular orbital degeneracy occurs in the sys-
tem, the MOs must be subjected to a unitary transformation
within unique shells using the averaged Fock operator in Eq.
~22!,

Fi j
av5Hi j 1(

l

all
pl

ml
F ~ i j u l l !2

1

2
~ i l u j l !G , ~61!

wherepl is the shell population andml stands for its orbital
degeneracy. Employing these redefined molecular orbitals,
the elements of theU matrix can be found.

VII. RESULTS AND DISCUSSION

The method described above has been tested on the se-
lection of simple molecules. Calculations have been per-
formed by the RHF method using theGAMESS ~Ref. 32! pro-
gram and the 6 – 31G* basis set with geometry optimization.
Condensed FF indices have also been calculated for bonded
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atoms. The results of other authors24 for H2CO, SCN, and
CO have been reproduced with high accuracy when the iden-
tical basis set was employed.

The list of molecules is indicated in Table I, where the
results for the global hardness are shown. Three measures of
global hardness have been obtained within the same calcula-
tion scheme and identical basis set; the absolute hardness
~classical finite difference approximation!, 1

2(I 2A), the
Koopmans approximation,12(eLUMO2eHOMO), and the aver-
age global hardness from Eq.~53!, h5 1

2(h
11h2). While

the two former measures of hardness are very well corre-
lated, the latter obviously represents a different approach,
being consistently smaller in all molecules under study. The
value of global hardness is beyond experimental verification;
the only reasonable judgment can be built by confrontation
with the absolute hardness of free atoms. While the absolute
and Koopmans approaches~Table I, column 1 and 2! give
the molecular hardness in the identical range as it is known
for free atoms, the average hardness calculated from Eq.~53!
tends to suggest that molecules are considerably softer than
free atoms.

The problem of units for hardness and softness has not
yet been definitely resolved. In this work, the convention is
used as developed earlier in this laboratory.33 Since electrons
are charged particles, taking the derivative over the number
of electrons]/]N invariably involves changing the charge.
Hence the conventional units are@volt# for electronegativity,
@volt/electron# for hardness, and@electron/volt# for softness.

Two terms contribute to the hardness of the molecule.
The first is identical to the result reported in our previous

papers.15,17 The second term in Eq.~53! is an entirely new
contribution introduced by this work and is based on the
result for theU matrix. This part may be interpreted as a
result of the relaxation of the electronic structure upon ion-
ization. Its role is quite important, as proved by the compari-
son of hardness with14JHOMO, 1

4JLUMO , the last two entries
in Table I. The relaxation term is always negative.

The classical term (I 2A) no longer appears in the ex-
pression for the global hardness of the molecule. Instead, by
neglecting the exchange integrals and the contribution from
the relaxation (U50) the present result may be reduced to
ha> 1

2JFMO. An identical expression for global hardness has
been obtained earlier within a simplified HF analysis in pre-
vious work from this laboratory17 ~see also references
therein! and has also been proposed by other authors.34 A
distant relation between the global hardness (ha> 1

2JFMO)
and the absolute hardness1

2(I 2A) can be explained tenta-
tively by means of the Pariser approximation for the Cou-
lomb integrals (J>I 2A). However, this relation has been
proposed for atoms, and as a working approach only; its
extension to molecules would be unfounded.35

Review of the results in Table I raises the question:
which is the more realistic measure of the global hardness of
a molecule: the absolute hardness1

2(I 2A), or the Hartree–
Fock result@Eq. ~53!#? Both represent only an approximation
to the derivativeh5 1

2(]
2E/]N2)v(r ) . The absolute hardness

is obtained by a crude finite-difference approximation to the
energy functionE(N). The approach introduced in this work
is more refined, albeit not accurate. It is subject to the limi-
tation of the Hartree–Fock formalism, in particular the inte-

TABLE I. Hardness of the molecule as calculated by various approaches (V/e).

Molecule
1
2(I 2A)

1
2(eL2eH)

1
2(h11h2) h1 h2 1

4JLUMO
1
4JHOMO

BCl3 6.537 7.294 1.566 1.561 1.570 2.430 2.024
BF3 10.242 11.677 2.202 2.162 2.243 2.634 3.192
BH3 7.192 7.973 2.285 2.041 2.530 2.631 3.221
C2H2 7.610 8.509 2.088 1.983 2.192 2.558 3.299
C2H4 6.549 7.569 1.864 1.820 1.909 2.578 3.095
C2H6 9.501 9.943 1.649 1.428 1.871 1.586 2.586
CF3

2 4.944 5.735 2.143 1.878 2.408 2.850 3.523
CF3

1 9.576 11.388 2.466 2.516 2.416 3.551 3.348
CH3

2 5.700 6.501 1.916 1.706 2.126 1.951 3.406
CH3

1 8.021 9.071 2.574 2.256 2.892 3.178 3.809
CN2 8.149 9.198 2.272 2.102 2.442 2.701 3.549
CNO2 8.386 9.336 1.974 1.984 1.964 2.718 3.201
H2O 7.443 9.098 2.122 2.066 2.177 2.373 5.217
H2S 6.856 7.573 2.028 1.828 2.227 2.191 3.146
NCO2 8.386 9.336 2.068 2.049 2.087 2.759 3.084
NH2

2 5.958 7.098 2.060 1.918 2.202 2.185 4.148
NH3 7.237 8.308 2.143 1.797 2.489 1.964 4.319
NH4

1 12.021 12.851 2.150 1.735 2.566 1.891 4.006
PH2

2 5.352 5.906 1.793 1.659 1.928 1.969 2.578
PH3 5.746 6.331 1.900 1.733 2.068 2.089 2.727
PH4

1 10.025 10.464 1.920 1.673 2.167 1.942 2.732
OH2 6.761 8.176 2.441 2.345 2.537 2.748 4.946
HS2 6.437 7.159 1.967 1.851 2.083 2.230 2.974
SO2 6.224 7.012 2.012 1.977 2.046 2.627 2.869
SO3 7.004 8.192 1.955 1.938 1.973 2.626 2.833
CO 8.579 9.715 2.684 2.373 2.994 3.049 4.149
H2CO 6.299 7.908 2.066 2.073 2.060 3.004 3.560
SCN2 6.780 7.619 1.638 1.503 1.772 2.192 2.553
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gral occupation of the molecular orbitals. Equation~53! for
hardness seems to be a limit achievable by the rigorous
Hartree–Fock treatment. Further application of this new
measure of hardness provides additional support to the pro-
posed new measure of hardness.

The principal result of this work are theab initio FF
indices calculated from Eq.~42!. They have been tested
against the condensed FF indices@Eq. ~13! and ~14!# calcu-
lated by the same RHF method and the identical basis set.
Results are shown in Fig. 1 for the collection of bonded
atoms other than hydrogen, and in Fig. 2 for the bonded
hydrogen atoms. Correlation coefficients~R! prove a very
good match between the two sets of data; both seem to con-
tain the same information. This fact is significant. The con-
densed indices are obtained in two independent Hartree–
Fock calculation runs for the ion and for the neutral
molecule. Theab initio FF indices are the result of one
single SCF run for a given molecule. The close match be-

tween the two sets of data indicates that the proposed ap-
proximation for the derivative]C/]N @Eq. ~24!# very accu-
rately predicts also the change in atomic charges upon
ionization. Theab initio FF indices introduced in this work
are superior over the condensed ones in one more point; they
are independent of the definition of atomic charges, essential
for the calculation of the condensed indices.

The analysis of two contributions to theab initio FF
indices,f 1 and f 2 @Eq. ~42!# is instructive. The first (f 1) is a
direct result of changing the orbital population at the
HOMO/LUMO level, and is identical to the result obtained
earlier by this group.16 The second (f 2) appears in this
present work as the consequence of the proposed approxima-
tion for ]C/]N @Eq. ~24!#. f 2 contains contributions from
MO other than HOMO/LUMO and may be interpreted as a
relaxation term due to the change of all MOs due to the
ionization process. It also contains the elements of theU
matrix and thusf 2 reflects the quality of the approximation

FIG. 1. Fukui function indices calculated by means of Eq.~42! against the
condensed indices@Eqs. ~13!, ~14!# for atoms other than hydrogen.~A!
Electron accepting process;~B! electron donating process. All atoms in all
molecules listed in Table I are included. Calculated slope and correlation
coefficient is given in the box.

FIG. 2. Fukui function indices calculated by means of Eq.~42! against the
condensed indices@Eqs.~13!, ~14!# for the hydrogen.~A! Electron accepting
process;~B! electron donating process. All hydrogen atoms in all hydrogen
containing molecules listed in Table I are included. Calculated slope and
correlation coefficient is given in the box.
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introduced by this present work. Thef 2 term is in most cases
smaller thanf 1 . In few moleculesf 150 for the hydrogen
~BH3, C2H4, C2H2, H2CO! for the symmetry reason.f 2 may
be positive or negative, in contrast tof 1 being positive for
but a few of the molecules studied~nitrogen in NH3, NH2

2,
NH4

1!. An approximation limited to the HOMO/LUMO oc-
cupancy proved to be insufficient, except whenf 2>0 which
is exceptional, in view of the calculated data.

The local~atomic! softness is potentially the most inter-
esting result from the chemical point of view. The fact that
bonded atoms show various softnesses belongs to the clas-
sics of chemistry~the doubts concerning the definition of the
local hardness in DFT represent only the difficulty of de-
scribing this fact by the tools of the theory!. The ambidental
base SCN2 is the best known example. SCN2 shows two
kinds of preferences; to the hard external atom~Si! it binds
by the hard end~N!, to the soft external atom~Pt! if is bound
by the soft end~S!.36 The local softness index derived here
provides clear quantification of this effect in this molecule
and for other similar examples on the list, CO, CN2, CNO2,
NCO2.

An important new feature discovered here is the substan-
tial difference between the softness against an electrophile
(s2) and the softness against a nucleophile (s1). Therefore,
separate analysis has been performed for the two sets of data.
They have been collected in Fig. 3 (s2) and Fig. 4 (s1).
Several observations on the diagrams confirm very rational-

character of the proposed atomic softness indices.

~i! Electrophilic softness (s2) for the terminal atoms in
pseudohalogen ions covers the same range as softness
for halogen ions@calculated from absolute hardness
by Eq.~3!#. Carbon in CNO2 appears as soft as iodine
anion I2, while nitrogen in CN2, SCN2 is as hard as
fluorine F2 ~Fig. 3!. Similar correspondence is found
for s1. Carbon in acetylene is as soft as the Cu1 and
Ag1 ions, while fluorine in CF3

1 is as hard as, e.g.,
Na1 or Mg11.

~ii ! A number of experimentally well established trends
are properly reproduced by the atomic softness~atom
in boldface!,

s2: PH2.PH3@NH2
2.NH3

HS2.H2S.OH2.H2O

CF3
2.CH3

2.C2H4

s1 CH3
1.CF3

1.C2H2.C2H4

SO2.SO3.

However, the classical sequence for boron containing
Lewis acids BX3 is apparently not reproduced by the
s1 of the boron atom~Fig. 4!. It is recovered in the
form
s1 BH3.BCl3.BF3 ,

FIG. 3. The diagram of atomic softness for the reaction with an electrophile.
Atoms are indicated in boldface. Softness of halogen ions~the last column!
has been calculated from their absolute hardness@Eq. ~3!# as proposed in
Ref. 4.

FIG. 4. The diagram of atomic softness for the reaction with a nucleophile.
Atoms are indicated in boldface. Softness of simple cations~the last col-
umn! has been calculated from their absolute hardness@Eq. ~3!# as given in
Ref. 4.
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which suggests that acidic character of the boron tri-
fluoride ~very hard! and boron chloride~hard! is pre-
dominantly determined by the halogens~large!,
whereas small hydrogen atom in boron hydride does
not shield the boron atom from playing a role in
acidic action in BH3.

~iii ! Interesting new relations have been disclosed through
the data given in Fig. 3 and Fig. 4.
s2 CO.NCO2.H2CO.

Attaching atoms to the carbon in CO reduces its softness, the
more so, the harder atom is attached. This behavior has long
been known as the ‘‘symbiosis,’’37

s2 H2CO.NCO2.CO.

The softness of the terminal oxygen increases upon substitu-
tion at the vicinal carbon atom, in reverse order to the former
sequence. The two previous observations are confirmed for
the nitrogen atom in

s2 OCN2.CN2.CNO2.

Also,

s2 NCO2@CNO2 and CNO2.NCO2.

In general, atoms appear softer when bonded in the terminal
position than in the chain. An interesting role of electrone-
gativity of the substituting atom can be found on the follow-
ing example:

s2 OCN2.CN2.SCN2.

An electron withdrawing oxygen atom added to CN2 softens
the terminal nitrogen, while an electron donating sulfur atom
at the same position makes it harder.
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15L. Komorowski, J. Lipiński, and M. J. Pyka, J. Phys. Chem.97, 3166

~1993!.
16L. Komorowski,Structure and Bonding~Springer, Berlin, 1993!, Vol. 80,

pp. 46–70.
17R. Balawender, L. Komorowski, and S. Roszak, Int. J. Quantum Chem.

61, 499 ~1997!.
18G. H. Liu and R. G. Parr, J. Chem. Phys.106, 165 ~1997!.
19P. K. Chattaraj, A. Cedillo, and R. G. Parr, J. Chem. Phys.103, 7645

~1995!.
20R. S. Mulliken, J. Chem. Phys.2, 782 ~1934!.
21R. A. Donelly and R. G. Parr, J. Chem. Phys.69, 4431~1978!.
22R. T. Sanderson, J. Am. Chem. Soc.74, 272 ~1952!; Science114, 670

~1951!.
23M. K. Harbola, P. K. Chattaraj, and R. G. Parr, Isr. J. Chem.31, 395

~1991!.
24C. Lee, W. Yang, and R. G. Parr, J. Mol. Struct.163, 305 ~1988!.
25R. S. Mulliken, J. Chem. Phys.23, 1833~1955!.
26J. F. Janak, Phys. Rev. B18, 7165~1978!.
27W. Kohn and L. J. Sham, Phys. Rev. A140, 1133~1965!.
28W. Yang, R. G. Parr, and R. Pucci, J. Chem. Phys.81, 2862~1984!.
29R. McWeeny,Methods of Molecular Quantum Mechanics~Academic,

London, 1992!.
30Y. Yamaguchi, Y. Osamura, J. D. Goddard, and H. F. Schaefer II,A New

Dimension to Quantum Chemistry~Oxford University Press, Oxford,
1994!.

31S. P. Karna and M. Dupuis, J. Comput. Chem.12, 487 ~1991!.
32GAMESS, General Atomic and Molecular Electronic Structure System, Cray

X-MP and Cray Y-MP version under UNICOS, Department of Chemistry,
North Dakota State University and Ames Laboratory, Iowa State Univer-
sity.

33L. Komorowski, Chem. Phys.114, 55 ~1987!.
34A. Julg, J. Mol. Struct.: THEOCHEM280, 129 ~1993!.
35R. Pariser, J. Chem. Phys.21, 568 ~1953!.
36D. F. Shriver, P. W. Atkins, and C. H. Langford,Inorganic Chemistry

~Oxford University Press, Oxford, 1992!.
37J. E. Huheey,Inorganic Chemistry: Principles of Structure and Reactivity

~Harper and Row, New York, 1983!

5211J. Chem. Phys., Vol. 109, No. 13, 1 October 1998 R. Balawender and L. Komorowski


