Anharmonicity of a Molecular Oscillator
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ABSTRACT: The phenomenon of anharmonicity has been proved to be an effect of
coupling between the change of nuclear positions in molecular vibrations (Q) and the
electronic degrees of freedom as represented by the chemical potential (u) at constant
number of electrons (N). The coupling parameters have well-founded meaning in the
conceptual density functional theory (DFT), first approximations to their numerical
values have recently become available. The effect of coupling between normal
vibrational modes also appears to be the direct consequence of the electron-nuclear
coupling. To show the pure anharmonic effect, calculations for a collection of diatomic
molecules have been presented. The anharmonicity, described in the present work as
d°E/dQ> # 0, has been proved to be the intrinsic property of every oscillating molecular
system. A small anharmonic contribution exists even for the “strong harmonic”
oscillator, when for the force constant k both a2 = (9k/9Q), = 0 and A = (9k/IN), = 0.
The latter derivative of the force constant appears to be primary factor determining the
anharmonic property of a molecule. An estimate of its values has been provided from

the experimental data on the anharmonicity of diatomic molecules.
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Introduction

M odeling the energy function E(R) for a chem-
ical bond has been attempted in the past by

Parr and colleagues [1, 2]; the rich experimental
data from spectroscopy offered a solid ground for
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such analysis [3]. These studies preceded the ad-
vent of the chemical branch of density functional
theory (DFT), which turned attention to the E(N)
function, and allowed connecting this field to the
traditional knowledge of chemists, coded in elec-
tronegativity indices, and later the hardness as well
[4]. Today it is possible to combine these two view-
points and study the properties of the energy func-
tion for a variable number of electrons (or variable
chemical potential) and variable nuclear positions
as well.

The contemporary conceptual DFT analysis of a
molecular oscillator revealed the special role of the
mixed energy derivatives known as nuclear reac-
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tivity [5-9], (®; = 9°E/dN0Q;), and nuclear stiffness
of a system [9], (G, = 0°E/IN?9Q) for its properties,
including thermal fluctuations of electronegativity
and global hardness [10, 11]. We have previously
reported an analysis of the possible role of still
higher-energy derivatives [12]; the first preliminary
account has been provided, demonstrating that the
anharmonicity of a molecule might be determined
by means of the DFT energy derivatives. A com-
plete analysis of these derivatives up to the third
order was recently presented [13, 14] in the [N, Q]
as well in the [u, Q] representations. Instead of the
electrostatic potential, conventionally used in the
DFT, the positions of the nuclei were used as an
argument of the energy function: Q = {Q,}, where
Q; = R, — R;, is the displacement vector for a
nucleus whose equilibrium position is R; ,. The en-
ergy expansions have also been formulated in these
terms [14]; however, the important technical diffi-
culties in diagonalization of the force constant ma-
trix have been exposed in this work for the [u, Q]
representation. This representation is appropriate
for the analysis of the behavior of a molecular os-
cillator with the constant number of electrons N,
thus an isolated molecule. The energy expansion
function for such a molecule in Cartesian coordi-
nates as given in ref. [14], explicitly contains the
coupling terms for the chemical potential u and the
nuclear positions Q, providing a convenient start-
ing point for the present analysis.

This work is focused on unveiling the role of this
coupling for a very physical property of all real
molecules: anharmonicity. The physically meaning-
ful expressions for the derivatives of the thermody-
namic potential, analogous to the force constant
and anharmonicity, are given first. Then the trans-
formation to the normal coordinates is presented.
Finally, the link between the parameters by which
anharmonicity is typically described in the molec-
ular spectroscopy and those provided by the con-
ceptual DFT [15] is elaborated.

Energy Derivatives Over Q at
Constant Chemical Potential

The energy derivatives over the nuclear dis-
placement have a very well-established meaning of
force (—F)), force constant (k;)) and the anharmonic-
ity (a;), when they are calculated at constant N. For
the purpose of the present analysis, the derivatives
at constant chemical potential w are needed. This
analysis is based on the standard DFT formalism [4]

and explores the results of the analysis published
separately [14]. Since the thermodynamic potential
Q) = E — uN is appropriate function for the [u, Q]
representation, let the derivatives be defined as:
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This has been proven in ref. [14].
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These derivatives have been introduced before
[14], but their relation to more familiar quantities

i= 9Q;/ an Ajjk = 90, N/

as well as to other known derivatives of energy,
remains to be proven. The total differentials of force
in the [N, Q] and [w, Q] representation, respec-
tively, are:

j

dF; = odp — E Eidej‘ %)

j
Considering the standard differential

du = ndN — X, ®,; - dQ;, it is obtained from the
latter:

i
This confirms the relation found before [16, 17]:

D; = no; or S®; = o (7)
and yields the desired new results for k;;:

kij =0;* (I)] + EU or E = klj - Sq)L * (I)] (8)

q
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The derivatives, S (softness), n (hardness), ®,
(nuclear reactivity), and o; (nuclear softness), have
been extensively discussed elsewhere [14, 15].

By taking a derivative of Eq. (8), it follows:

N/, \oN N )\ N

-
9)

However, by definition:
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Hence, introducing the nuclear stiffness
G; = —(0®;/9IN)g we get:

Xij = SA‘] + SZ((I)Z" G] + (D]' Gz) + 'yS3(I)l°(D]
(11)

This result is final, as all derivatives, including

A= akl-]- d al _
ij aN o an 6I~LQ_’Y’

have already been defined, and their numerical val-
ues are available, at least in the first approximation
[9, 13, 18].

The & tensor components will be found from
the definition, using the result in Eq. (8):

A = (ak’> = [a (k; — S®,- ®)) (12)
N0y, e T )

To determine (dk;/9Qy),, the method success-
fully used will be applied, by comparing the dk;;
differentials in the [N, Q] and [u, Q] representa-
tions, including the use of standard form for dpu.
After reworking, the following two equations re-
sult:

(akff —a,+® (ak"f (13)
an . ijk k 3P« o

and

A= (ak,]> nm  or (akij =NS. (14)
ij oy ijo+
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Hence the first derivative needed in Eq. (12)
reads:

ak;;
<(")Q]k)u = ai]'k + S/\l](pk (15)

The second derivative necessary to proceed with
Eq. (12), (9®;/9Qy),,, will be obtained from the def-

inition of A;, making use of Eq. (7):

) -5~ ) - ) o+ )
9Qd, N0/, e, T T\eQy)

(16)

The derivative (9S5/0Qy), has already been cal-
culated elsewhere [13, 14]:

s\

From Eq. (16), using the result in Eq. (11), the
needed derivative is:

(aq>,.
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Equation (12) now yields the final result, using
Egs. (15), (17), and (18):

ﬁijk = al-]-k + S(Alj(l)k + )\ik(I)j + )\/kq)z) + Sz(q)] * (I)k : Gi
+(I)i'q)k'G]‘+(pi'(I)j'Gk)+'ySS(pi‘(I)l"(bk. (19)

) In the Egs. (8), (11), and (19), the derivatives Eij,
Ajj, and & have been provided with the physical
meaning, by relating them to the force constant and
the anharmonicity, as well to other less known
derivatives, which can nevertheless be calculated,
in principle, for any molecule.

Energy Function

Taylor expansion for the thermodynamic poten-
tial in the [u, Q] representation can readily be for-
mulated using the set of known derivatives up to
the third order [14]. By definition, Q = AQ, and the
force is put zero, since expansion is made around
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the point of global equilibrium of the nuclear mo-
tion.

AQ[p, Q] = —NAw = 3S(An)* = X 07 Qdp

+ % E Ei]’Qi : Qj + %')’53(AM)3 + % 2 aijk Q- Qj - Qy
ij ijk
1 a5 2 1 <
+32- 00, Qi(Ap) +3 2 X;Qi- QAu.  (20)

i M i,j

Standard DFT derivatives of the thermodynamic
potential (—N, —S), as well as the nuclear softness
o; = (0F;/dn)q and (63E/6/LL3)Q = 5% have been
used (for details, see ref. [14]); the remaining deriv-
atives will be used, as given in Egs. (8), (11), (17),
and (19). However, for a successful use, the energy
expression must be transformed into the normal
coordinates. This will be done by the method pre-
sented before [11, 14], using the transformation ma-
trix Ij* that diagonalizes the force constant matrix.
Then:

ok,
0Q;

E (1:1 : 1]’3))\1] = Aa(saﬁ and aaﬁ = z

ij i

1.
(21)

The following transformations concerning the
new derivatives are important:

2 kiQi Q= 2 k(Q.)? — S D 0usQuQp

ij B
(22)

2 Xz'jQi * Qj =S E )\a(Qa)z +25° E (PaGBQaQB

ij a,B

+ ,yS3 E (Pa(PBQaQB (23)
B

E 5ijk : QinQk = E aaB(Qa)ZQB + 3§ E )\a(PB(Qa)ZQB

ijk B B

+352 D GotpyQuQsQy + ¥S° D) 0up9,QuQsQ;
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The final expression for the thermodynamic po-
tential in normal coordinates reads:

AQ[p, Q] = —NAw = 35(An)* — SAn X [e,

«

— 358G + ¥50)1Qu + ¢ 2 (a4p + 35A.0)(QuVQg

o,pB
+ % Z (ka + S)\aAM)(Qa)Z - %S Z ((Pa(PB - ZS(PQGEAM‘
a aB
— Y0, 0AmQ. Qs +:5* 2 0p,(3G,

a,By

+ yS(Pa)QaQBQy' (25)

Derivatives ¢,, G are nuclear reactivity and nu-
clear stiffness for the normal mode, as introduced in
ref. [11]. The form of this expression discloses a
rather rich panorama of possible couplings in a
molecule, not only between the vibrational modes
and the electronic degrees of freedom, but also,
remarkably, between couplings between the nor-
mal modes themselves. Although potentially inter-
esting, the latter phenomenon will not be a target
for this present analysis. In order to concentrate on
the anharmonicity in its pure form, the expression
will be reduced to only one vibrational mode.

Anharmonicity of Diatomic Molecules

Diatomic molecules are convenient target of the
analysis of the anharmonicity, as the phenomenon
is not obscured by couplings between vibrations
and Eq. (25) becomes considerably simplified:

AQ[p, Q1 = —NAp = 35(Ap) — Se(Aw)Q + 35Q°
+35%G + yS)(ApPQ + 3 AAWQ® + taQ’®
+5yS(Ap), (26)

where the symbols of k, A and 4 are used again for
the sake of clarity:

k=k— S¢?
A =S\ +25%G + y53¢?

d=a+3SA¢ + 35°Ge* + yS3¢°.

In this equation, a = (9°E/9Q’)y has a meaning
of the third derivative of energy, which may con-
tribute to the anharmonicity of the system, but
other terms may matter as well. The coupling con-
dition, necessary to eliminate Ap from Eq. (26),
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must allow for the third-order terms to play a role.
With the first derivative vanishing at equilibrium,
the natural choice is to warrant that the second
derivative is properly reproduced around the min-

imum:
() -«
EYaYa =K,
10 }

which leads to the coupling condition

Ap=— ;\Q. (27)

Using this to eliminate Ay from Eq. (26), and
transforming ) — E, results in the final working
expression for the energy at constant N:

AEy = 7knQ* + g anQ’ (28)

where

2

= age
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)2

>
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and

3E a 2 a 3
= — _9j 2 ) IR~ ] e
aN_dQS 24 +3S (G+yS(p)<X) vS (X) .
This may be compared with the truncated expan-
sion of the Morse function [19, 12], providing the

very first experimental measure of the anharmonic-
ity, a,.

(.’a(’

AE=_0Q%- 7 Q*+--, (29)

where k, is the experimental force constant and the
experimental anharmonic constant g, is related to
the dissociation energy, D,: a, = (k./2D,)"/ % These
experimental derivatives can now be related di-
rectly to the derivatives in Eq. (28): ky; = k, > 0 and
ay = —3ka, <O0.

Equation (28) is quite general, as no simplified
assumptions have been made, except the trunca-
tion. To understand its meaning, it is instructive to
divide the analysis into steps with increasing de-
gree of complexity. A general assumption that will
remarkably simplify the result without a loss of
accuracy is complete neglect of the derivative y = 0,

ANHARMONICITY OF A MOLECULAR OSCILLATOR

as it appears here as an additive term only. As
shown by Fuentalba and Parr [18], this derivative
tends to be exceedingly small in many systems
studied. This is employed in all further steps.

a. The strong harmonic oscillator:

B ok 3 d 3 ok B
a = @ . = 0 an A= W o = 0
Under these circumstances:

NI W

¢

>

i=35G  A=25%G  and
(30)

and the energy is expressed by an attractively sim-
ple form:

AE = 1Q%k - 1S¢?) +2Q%(S%%G).  (31)

Thus

and possibly
ka, = —32S%¢%G. (32)

b. Reduced anharmonic oscillator:

L 4 C(aky
a = @NQ&O an A= mQ—O.
Here

i=a+35¢°G X =25%G.

The anharmonic term a now included directly in
(26) will introduce perturbation into k, via the @/
parameter. Neglecting this (small) third-order effect
leaves the force constant for this case, identical as
for the strong harmonic oscillator. However, the
effective anharmonicity now contains the pure an-
harmonic component (a), and an increment that has
an origin in other derivatives (the a* term has been
neglected):

ka, = —1a 380G (33)
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a calculated from this equation may be considered a
very crude first approximation to the anharmonic-

ity.

¢. Harmonic oscillator:

_ ok _0 d )\_(ak) 0
a= aQN_ an = 8NQ¢ .

3p(A + SeG)

a
2 _—=
+ 25%¢G and 5 A+ 256G

(34)

By writing the energy expression and confront-
ing with the Morse potential the following results
are obtained for the experimental force constant
and anharmonicity (cf. section a):

k=k-sg1-25FC I o
S e Ty IS
9(S¢G + A)?
— 2.2 [ ——
ka, = 25he + 25% [1 2500 + A)z]. (36)

The second equation allows, at least in principle,
calculation of the first approximation to the A de-
rivative using experimental k, and 4, as a source of
data.

d. Anharmonic oscillator:

B ok d B ok
a= @NaﬁO an /\—mQaﬁO.

The force constant will be identical as for the
harmonic oscillator, if the third order corrections
are neglected. A more refined result for the anhar-
monicity is obtained with the neglect of terms con-
taining the square anharmonicity (a%):

2 Aa+B

K= 3 (256G + M)

(37)

where

A=A —14SoG(A + S¢G) and
B =3Sp(A + SeG)[A2 — 5S¢G(A + SeG)].

The results presented above for the various types of
molecular systems allow for confrontation with the
experimental data on the anharmonicity of mole-
cules, as known from spectroscopy.

Results

A set of diatomic molecules was used, for which
the numerical data for the necessary derivatives are
already known [12]. The convention for hardness
and softness has been followed as: m = I — A and
nS = 1. Direct application of the formulae pre-
sented in the preceding section is hardly possible as
the numerical values ascribed to the derivatives
have not yet been checked against any measurable
molecular property. Nevertheless, for the sake of
this study, standard values of softness (S), nuclear
reactivity (¢), and nuclear stiffness (G) have been
accepted, as previously reported [9]. (However, the
conventional factor of % has not been included in G
to warrant the coherence with the hardness defini-
tion.) The latter two are based on the calculated
forces as appearing when a molecule is ionized,
with its geometry frozen. The available values for A
derivative are more ambiguous, as they are based
on the force constants also calculated for the ion-
ized entities. With the experimental data for the
anharmonicity well founded, this work opens an-
other chance to demonstrate, how important the
A and a derivatives may be in determining the
molecular properties. The following calculation
scheme has been adopted.

For the reduced anharmonic case, the first esti-
mate for the anharmonicity a has been calculated
from Eq. (33) (a,, implying A = 0). The harmonic
oscillator shown in Eq. (36) has been used to calcu-
late the zero order estimate to the A derivative (A,,
implying a = 0). Experimental data for k., have
been used. The approximation A >> S¢G has been
explored and justified a posteriori. Finally, the full
anharmonic case was used to obtain the actual val-
ues of A and a. This was done using the approxi-
mate procedure:

For A > S¢G, the anharmonic constants in Eq.
(37) reduce to A = A?> and B = 3S¢A>. Hence, the
actual 4 and A parameters are bound by an approx-
imate linear function:

ka,=2a+2S@A. (38)

This linear function is also given by the two
points of intersections with axes: [a,, 0], and [0, A,],
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TABLE |

Calculated values of the anharmonicity (a) and the A derivative.*

Molecule ag [1/A] k, [eV/A?] S¢? a, a Ao A
LiH 1.128 8.205 0.0377 —4.06 13.58 0.332 1.44
HF 2.218 66.650 0.0010 -64.52 221.69 0.543 2.41
F, 2.975 59.908 5.5470 —80.68 73.82 —55.682 —106.63
Cl, 2.002 40.287 2.2359 —35.51 54.22 -19.234 —48.60
Li, 0.273 3.187 0.0192 -0.15 0.00 0.960 0.95
FCI 2.291 51.451 3.4985 -50.23 61.11 —32.635 —72.34
(6]6] 2.299 232.669 1.0403 —221.59 604.90 —68.768 —256.49
LiF 1.144 55.857 0.1447 -25.82 90.26 —3.646 -16.39
BCI 1.397 34.101 0.8947 -21.82 50.05 —7.291 —24.01
BH 1.633 22.481 0.0347 -16.73 54.20 -1.119 -4.75
Cs 1.888 87.851 1.3651 —74.16 156.26 —28.856 —89.66
NF 2.928 75.504 4.8137 —-116.02 55.00 —84.773 —124.96
SO 2.183 93.215 0.9655 —70.96 165.51 -37.911 -126.33
HCI 1.869 34.082 0.0054 —28.58 95.39 -0.613 —2.66
LiCl 0.864 12.324 0.0372 —4.36 15.68 0.338 1.55
BF 1.787 94.112 0.6755 —72.75 198.41 —20.181 —75.22
SiO 1.860 107.398 0.0919 —78.23 289.02 —8.683 —40.76

*a, and A, are first approximations obtained for the reduced anharmonic and the harmonic models, respectively. 2 and A have been
calculated for the anharmonic model by the procedure described in Results. Experimental data: a, from ref. [8], k, calculated from
experimental frequencies as reported therein. The units of calculated derivatives are based on electron-volt for energy and Angstrom

for distance, as indicated in the headings for 4, and k..

the points being calculated in the reduced anhar-
monic and harmonic models, respectively. Then:

0=a,— (i))\ (39)

Calculation of the actual values for 2 and A using
Egs. (38) and (39) is straightforward, albeit approx-
imate. All numerical results have been presented in
Table 1.

Discussion

The energy expression containing the effect of
coupling between the nuclear and electronic de-
grees of freedom leads to a conclusion of possible
practical importance: the force constants calculated
as either K = (9°E/0Q?)y, or K = (9°E/0Q?), must
not be compared directly with the experimental
force constants, K, = d°E/dQ* which contain the
effect of coupling even when the oscillator is treated
as strongly harmonic (@ = 0, A = 0). The correction
to K is rather small for the simple molecules, rang-
ing from (— }15(,02) for a strong harmonic model to
ca. (+2S¢?) for more realistic harmonic and anhar-

monic models. Remarkably, always K, = K. The S¢*
value in Table I (column 4) may serve as a guide-
line. The effect might be quite substantial, however,
when a molecule is soft and the first electron-nu-
clear coupling parameter, the nuclear reactivity ¢ is
large. For large molecules, the ¢ parameter is much
different for the vibrational modes as recently dem-
onstrated [11].

Another quite important conclusion born from
the strong harmonic model is that only admitting
the dependence of the chemical potential and the
global hardness on the nuclear displacement (¢ # 0,
G # 0), which can hardly be denied, is sufficient to
generate anharmonic properties of an oscillator.
The calculated anharmonicity for such a model is
much smaller than the experimental one [Eq. (32)],
but its sign is properly reproduced, as G < 0 has
been argued to be general property [12], and k., is
always positive.

Calculated results for anharmonicity are striking,
as both 2 and A tend to be large (Table I). The large
effect of the anharmonic component is not unex-
pected, as it is brought about by the (large) k.,
factor in the empirical Morse equation [Eq. (29)]. By
this present analysis, the origin of this behavior is
attributed to 2 and A derivatives being both equally
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important, thus exposing the role of electron nu-
clear coupling introduced by the A. It is interesting
to see the anharmonicity a positive in all molecules
studied. This fact has a neat interpretation: had the
electronic degrees of freedom been frozen, the vi-
brational motion (hypothetical) of a molecule
would never lead to its dissociation. Hence, disso-
ciation of a molecule is due to the rearrangement of
the electronic density, following the motion of the
nuclei. A are all negative with minor exceptions
when they are small positive numbers. The overall
negative value of the experimental anharmonicity
as given by ay = —3k., is dominated by the effect
of electron nuclear coupling. The A derivative ap-
pears to contain crucial information about the mo-
lecular properties, which are possibly important for
chemical reactivity of a molecule. Previously re-
ported data for A must be considered inappropriate
[12]. Numerical values of a and A calculated in this
work depend significantly on the adopted values
for the derivatives, S, ¢, and G.

An important finding of this work is first dem-
onstration of a possible experimental verification
for energy derivatives newly introduced in the con-
ceptual DFT. The proof of the origin of the anhar-
monic behavior of an oscillator may be of cognitive,
if not numerical, value.
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