Scientific publications

ResearchGate

Analytic Approach to the Local Softness and the Fukui Function

  1. Ordon, P.; Zaklika, J.;  Hładyszowski,J.;  Komorowski, L. Analytical Approximation to the Local Softness and Hypersoftness and to their Applications as Reactivity Indicators, J. Chem. Phys. 2023, 158, 174110. Supplementary material.
  2. Zaklika, J.; Hładyszowski, J.; Ordon, P.; Komorowski, L.; From the Electron Density Gradient to the Quantitative Reactivity Indicators: Local Softness and the Fukui Function. ACS Omega  2022, 7 , 7745-7758. Supplementary material.

Reaction Path & Reaction Fragility (RF)

  1. Ordon, P.; Komorowski, L. Reaction fragility method: monitoring evolution of atoms
    and bonds on a reaction path, [Chapter 9 in:] Chemical Reactivity vol. 1: Theories and principles; [Kaya, S., von Szentpaly, L., Serdaroglu, G., Guo, L., Editors.]; Elsevier, 2023.                                  
  2. Ordon, P.; Komorowski, L.  Monitoring Evolution of Atoms and Bonds on a Reaction Path by the Reaction Fragility Method.   (preprint).  ChemRxiv 2022. doi:10.26434/chemrxiv-2022-lj2g5.

                                   

  3. Ordon, P.; Komorowski, L.; Jędrzejewski, M.; Zaklika, J. The Connectivity Matrix: a Tool-Box for Monitoring Bonded Atoms and Bonds. JPhys. Chem. A. 2020, 124 (6) , 1076-1086.
  4. Ordon, P.; Zaklika, J.; Jędrzejewski, M.; Komorowski, L.Bond Softening Indices Studied by the Fragility Spectra for Proton Migration in Formamide and Related Structures. J. Phys. Chem. A. 2020124 (2) , 328-338.
  5. Zaklika, J.; Komorowski, L.; Ordon, P. Bond Fragility Spectra for the Double Proton Transfer Reaction in the Formic Acid-Type Dimers.  J. Phys. Chem. A.2019123 (19) , 4274-4283.
  6. Zaklika, J.; Komorowski, L.; Ordon, P. Evolution of the Atomic Valence Observed by the Reaction Fragility Spectra on the Reaction Path. J. Mol. Model. 201925 (5) , 134.
  7. Ordon, P.; Komorowski, L.; Jedrzejewski, M. Conceptual DFT analysis of the fragility spectra of atoms along the minimum energy reaction coordinate.  J. Chem. Phys. 2017147 (13), 134109. Suplementary Material.
  8. Komorowski, L.; Ordon, P.; Jędrzejewski, M. The Reaction Fragility Spectrum.  Phys. Chem. Chem. Phys. 2016, 18 (48), 32658-32663.
  9. Jędrzejewski, M.; Ordon, P.; Komorowski, LAtomic Resolution for the Energy Derivatives on the Reaction Path. J. Phys. Chem. A. 2016120 (21), 3780–3787.
  10. Jędrzejewski, M.; Ordon, P.; Komorowski, LVariation of the electronic dipole polarizability on the reaction path.  J. Mol. Model. 201319 (10), 4203–4207.

Conceptual Density Functional Theory & Applications

  1. Beker, W.; Stachowicz-Kuśnierz, A.; Zaklika, J.; Ziobro, A.; Ordon, P.; Komorowski, LAtomic polarization justified Fukui indices and the affinity indicators in aromatic heterocycles and nucleobases.  Comp.Theor. Chem. 20151065, 42–49.
  2. Beker, W.; Szarek, P.; Komorowski, L.; Lipiński, J. Reactivity Patterns of Imidazole, Oxazole, and Thiazole As Reflected by the Polarization Justified Fukui Functions. J. Phys. Chem. A 2013117 (7), 1596–1600.
  3. Szarek, P.; Komorowski, LModeling the electron density kernels.  J. Comput. Chem. 201132 (8), 1721–1724.
  4. Komorowski, L.; Lipiński, J.; Szarek, P.; Ordon, P. Polarization justified Fukui functions: The theory and applications for molecules. J. Chem. Phys. 2011135 (1), 014109.
  5. Szarek, P.; Komorowski, L.; Lipiński, J. Fukui functions for atoms and ions: Polarizability justified approach.  Int. J. Quant. Chem. 2010110 (12), 2315–2319.
  6. Komorowski, L.; Lipiński, J.; Szarek, P. Polarization justified Fukui functions. J. Chem. Phys. 2009131 (12), 124120.
  7. Ordon, P.; Komorowski, LDFT energy derivatives and their renormalization in molecular vibrations.  Int. J. Quant. Chem. 2005101 (6), 703–713.
  8. Komorowski, L.; Ordon, P. Anharmonicity of a molecular oscillator.  Int. J. Quant. Chem. 200499 (3), 153–160.
  9. Komorowski, L.; Ordon, P. Fluctuations in electronegativity and global hardness induced by molecular vibrationsJ. Mol. Struct. THEOCHEM, 2003630(1–3), 25–32.
  10. Komorowski, L.; Ordon, P. DFT analysis of fluctuations in electronegativity and hardness of a molecular oscillator.  Int. J. Quant. Chem. 200391 (3), 398–403.
  11. Komorowski, L.; Ordon, P. Vibrational softening of diatomic moleculesTheor. Chem. Acc. 2001105 (4–5), 338–344.
  12. Ordon, P.; Komorowski, LNuclear reactivity and nuclear stiffness in density functional theory. Chem. Phys. Lett. 1998292 (1–2), 22–27.
  13. Balawender, R.; Komorowski, L.; De Proft, F.; Geerlings, P. Derivatives of Molecular Valence as a Measure of Aromaticity.  J. Phys. Chem. A, 1998102(48), 9912–9917.
  14. Balawender, R.; Komorowski, LAtomic Fukui function indices and local softness ab initioJ. Chem. Phys. 1998109 (13), 5203.

 Electronegativity & Hardness of Bonded Atoms

  1. Balawender, R.; Komorowski, L.; Roszak, S. Acidic and basic molecular hardness in LCAO approximation Int. J. Quant. Chem.199761 (3), 499–505.
  2. Lipiński, J.; Komorowski, LThe solvent effect on the electronegativity and hardness of bonded atoms. Chem. Phys. Lett. 1996262 (3–4), 449–454.
  3. Komorowski, L.; Boyd, S. L.; Boyd, R. J. Electronegativity and Hardness of Disjoint and Transferable Molecular Fragments.  J. Phys. Chem.1996100 (9), 3448–3453.
  4. Komorowski, L.; Lipiński, J.; Pyka, M. J. Electronegativity and hardness of chemical groups. J. Phys. Chem.199397 (13), 3166–3170.
  5. Komorowski, L. Hardness indices for free and bonded atoms, Structure and Bonding, 1993, 80, 45-70.
  6. Komorowski, L.; Lipiński, J. Quantum chemical electronegativity and hardness indices for bonded atoms. Chem. Phys. 1991157 (1), 45–60.
  7. Komorowski, L.; Lipiński, J.; Misiak, P.; Pyka, M. J. Quantum-Mechanical Electronegativity and Hardness for the Molecular Systems and the Madelung Matrix. Prace Nauk. Inst. Chem. Nieorg. Met. Pierw. Rzadkich Polit. Wrocl. 198857, 54–64.
  8. Komorowski, LEmpirical evaluation of chemical hardness Chem. Phys. Lett. 1987134 (6), 536–540.
  9. Komorowski, LElectronegativity and hardness in the chemical approximation Chem. Phys. 1987114 (1), 55–71.
  10. Komorowski, L. Chemical Hardness and L. Pauling’s Scale of Electronegativity. Z. Naturforsch. A, 198742 (7), 767–773.
  11. Komorowski, LElectronegativity through the energy functionChem. Phys. Lett. 1983103 (3), 201–204.

 Boron Chemistry

  1. Komorowski, L.; Niedenzu, K. Reactions of N,N’-dimethylurea with boron-nitrogen compoundsInorg. Chem. 198928 (4), 804–806.
  2. Habben, C.; Komorowski, L.; Maringgele, W.; Meller, A.; Niedenzu, K. Reactions of boron heterocycles with pyrazole Inorg. Chem. 198928 (13), 2659–2663.
  3. Niedenzu, K.; Komorowski, LNew Boron-Nitrogen Analogues of Uracil Derivatives Z. Naturforsch. 198944b, 1421–1426.
  4. Das, M. K.; DeGraffenreid, A. L.; Edwards, K. D.; Komorowski, L.; Mariategui, J. F.; Miller, B. W.; Mojesky, M. T.; Niedenzu, K. Pyrazaboles of the type RR’B (mu-pz) 2BRR’and related studies Inorg. Chem.198827 (18), 3085–3089.
  5. Komorowski, L.; Niedenzu, K. Boron-nitrogen compounds, LXX. Boron derivatives of 3,3-diaminodipropylamine J. Organomet. Chem. 1978149 (2), 141–148.
  6. Emerick, D. P.; Nahm, F. C.; Niedenzu, K.; Komorowski, L.; Lipiński, J. Boron-Nitrogen Compounds, 83. Experimental and Theoretical Studies on Monomeric Iminoboranes Z. Anorg. Allg. Chem. 1980468 (1), 44–54.
  7. Komorowski, L. Chemistry and Properties of 1,3,2-Diazaboracycloalkanes (in Polish).  Wiad. Chem. 198034, 375–393.
  8. Komorowski, L.; Lipiński, J.; Niedenzu, K. Boron-nitrogen compounds, 80. The Electronic Structure of 1,8,10,9-TriazaboradecalinZ. Anorg. Allg. Chem.1979451 (1), 115–122.
  9. Emerick, D. P.; Komorowski, L.; Niedenzu, K. Boron—nitrogen compounds, LXVII. The reactions of (dimethylamino)diethylborane with 3,3-diaminodipropylamine J. Organomet. Chem. 1978154 (2), 147–150.
  10. Müller, K.-D.; Komorowski, L.; Niedenzu, K. Some Studies on (1-Imidazolyl)DiorganylboranesSynt. React. Inorg. and Met.-Org. Chem. 19788 (2), 149–155.
  11. Niedenzu, K.; Müller, K.-D.; Layton, W. J.; Komorowski, LBor-Stickstoff-Verbindungen, LXVIII. Kernresonanzspektroskopische Untersuchungen an 1,3,2-Diazaboracycloalkanen und Phenylboranderivaten Z. Anorg. Allg. Chem. 1978439 (1), 112–120.

 Organic Semiconductors

  1. Komorowski, L.; Lipiński, J.; Pesz, K. Possible charge-transfer modified band structure of organic conductorsJ. Phys. Chem. Sol. 198950 (4), 337–345.
  2. Komorowski, L.; Pyka, M. J. Lattice Energy of the Mixed System N-Methylphenazinum /Phenazine/ TCNQ.  Mater. Sci. (Poland), 198713, 117–120.
  3. Komorowski, L.; Lipinski, J. Polarization of Molecular ions in NaTCNQ and TTF. TCNQ Crtstals Mol. Cryst. Liq. Cryst. 1985120 (1), 187–190.
  4. Komorowski, LSoliton Quenching in the One-Dimensional Ising System Mol. Cryst. Liq. Cryst. 1985120 (1), 191–194.
  5. Komorowski, L. Magnetic Susceptibility of N-Alkyl-Triphenylphosphonium Tetracyanoquinodimethanides.  Mater. Sci. (Poland), 1984, 10 (1-2), 125–128.
  6. Chabasińska, H.; Komorowski, L.; Wycisk, R. Interaction between TCNQ (-) radical-ion and neutral tetracyanoquinodimethane (TCNQ) in tetrahydrofuranPol. J. Chem. 198458, 1193–1197.
  7. Komorowski, LCalculation of the charge transfer in ion-radical salts J. Phys. (Coll.) 198344 (C3), 1211–1214.
  8. Komorowski, LCrystallization of tcnq salts from acetonitryle in the presence of association equilibria J. Phys. (Coll.) 198344 (C3), 1207–1209.
  9. Komorowski, LFractionally charged ions in crystal lattices of organic ion-radical salts Chem. Phys. 198376 (1), 31–43.
  10. Komorowski, L.; Chyla, A.; Kowal, R. Phase Transitions in N-Alkyltriphenylphosphonium Tetracyanoquinodimethanides Phys. Stat. Sol. A198274 (2), 453–457.
  11. Małachowicz, G.; Komorowski, LAssociation equlibria in acetonitrile solution of tetracyanoquinodimethanides Chem. Phys. Lett. 198292 (6), 663–666.
  12. Komorowski, LNumerical Approach to the Band Structure in TCNQ Stack Phys. Stat. Sol. B, 1982111 (2), 443–447.
  13. Lipiński, J.; Komorowski, L.; Chyla, A. How Does the Electronic Structure of the TCNQ Stack Depend on Its Charge?, Mater. Sci. (Poland), 19817, 235–238.
  14. Komorowski, L. Kinetic Effect on the Magnetic Susceptibility of Tetracyanoquinodimethanides.  Mater. Sci. (Poland), 19817, 207–211.
  15. Komorowski, L.; Kowal, R.; Jerzak, S.; Waplak, S. ESR Study on Alkyl(Triphenyl)Phosphonium Tetracyanoquinodimethanides. Potsdamer Forschungsheften, 1979B20, 141–145.
  16. Komorowski, L.; Krajewska, A.; Pigoń, K. Phase Diagram and Electric Conductivity in the Binary System: Picric Acid-o-Bromoaniline Mol. Cryst. Liq. Cryst. 197636 (3–4), 337–348.
  17. Pigoń, K.; Komorowski, L.; Krajewska, A. Electric Conductivity of Complex Isomers.  Sci. Pap. Inst. Org. Phys. Chem. Tech. Univ. Wroclaw, 19747, 308–312.

Cooperation in other topics

  1.  Zierkiewicz, W.; Komorowski, L.; Michalska, D.; cerny, J.; Hobza, P. The Amino Group in Adenine: MP2 and CCSD(T) Complete Basis Set Limit Calculations of the Planarization Barrier and DFT/B3LYP Study of the Anharmonic Frequencies of Adenine. J. Phys. Chem. B 2008, 112 (51),16734-40.
  2. Komorowska, M.; Lamperski, J.; Komorowski, LNear-infrared-induced proton transfer studied by electron spin resonanceChem. Phys. 1999244 (1), 101–109.
  3. Balawender, R.; Gupta, M.; Orgaz, E.; Komorowski, LElectronic structure of KMgH3, KMgH2F, KMgF3 with the perovskite structureActa  Phys. Polon. A 199588, 1133–1141.

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany.